
68	 Copublished by the IEEE CS and the AIP	 1521-9615/09/$25.00 © 2009 IEEE� Computing in Science & Engineering

V is u a l i z a t i o n C o r n e r

Editors: Cláudio T. Silva, csilva@cs.utah.edu

Joel E. Tohline, tohline@rouge.phys.lsu.edu

R esearchers in the open source
community are steadily im-
proving scientific visualization

tools. These new tools are providing
a wider array of sophisticated probes
for data analysis and a wider assort-
ment of effective user-friendly inter-
faces. They’re also making it easier
for researchers in the computational
science community—across many
disciplines—to effectively analyze
huge datasets by drawing on the
human brain’s acute ability to sort
through complex and time-varying vi-
sual patterns. The astrophysics group
at Louisiana State University (LSU),
for example, routinely uses volume-
rendering and ray-tracing algorithms
in conjunction with animation tech-
niques to examine the time-varying
behavior of isodensity surfaces that
arise in computational fluid dynamic
(CFD) simulations of mass-transfer-
ring and merging binary star systems.1
Although such analyses generally pro-
vide only a qualitative identification
and assessment of structure within a
given dataset, the insight gained from
visual inspection can nevertheless be
extremely valuable. For example, it
was through visual inspection that re-
searchers at LSU initially spotted the
nonlinear development of triangular-,
square-, and pentagonal-shaped tidal
resonances in recent simulations.2,3

LSU’s astrophysics group has be-
gun to incorporate VisTrails into its

arsenal of scientific visualization and
data analysis tools. VisTrails primar-
ily interested the group a few years
ago because it provides a user-friendly
workflow interface to the extensive
VTK software library. It also auto-
matically tracks the provenance of
data analysis efforts.4 However, what
most impresses us now is the ease with
which VisTrails facilitates the inser-
tion of home-grown analysis mod-
ules into an otherwise VTK-based
workflow. Taking advantage of this
additional programming versatility,
we have gained a greater appreciation
of the role that visualization tools can
play in the quantitative assessment of
results from large-scale simulations.
In this article, we first describe the
VTK-based workflow that we ini-
tially constructed in VisTrails to view
streamlines within each binary mass-
transfer simulation. We then describe
the Python module, whose insertion
into this workflow has permitted us to
identify values of key rotational fre-
quencies associated with such flows.

Base Workflow
Within VisTrails, we initially selected
various VTK-based modules to do the
following, in sequence (see Figure 1a):

Read simulation data•	 . We used
vtkPLOT3DReader to read in one
file containing the (x, y, z) coordi-
nate locations of every vertex on our

3D cylindrical coordinate mesh and
a separate file containing the fluid’s
mass-density (scalar) and momen-
tum density (3D vector) at every
grid vertex.
Outline cylindrical domain bound-•	
ary. As shown, we enlisted vtk­
StructuredGridOutlineFilter,
vtkPolyDataMapper, and
vtkActor.
Define isodensity surfaces•	 . We ren-
dered two nested isodensity sur-
faces to outline high- (red) and
low-density (blue) flow regions.
The Red_contour and Blue_

contour module groups each
contain vtkContourFilter, vt­
kDataSetMapper, vtkProperty,
and vtkActor.
Draw streamlines•	 . As Figure 1b
shows, each of the eight sepa-
rate Draw_Streamlines mod-
ule groups uses vtkStreamLine,
vtkTubeFilter, vtkDataSet­

Mapper, vtkProperty, vtkActor,
vtkSphereSource, vtkPolyData­
Mapper, and vtkLODActor to trace
an individual streamline within the
flow. Streamline lengths are set by
feeding a common Propagation_
Time into all eight module groups.

VisTrails renders the output from
the various workflow actors in a com-
posite scene using vtkRenderer as
viewed by an observer located at a
position that vtkCamera specifies.

A relatively simple, customized Python module that plugs smoothly into an otherwise standard workflow
within VisTrails facilitates a quantitative analysis of complex fluid flows in simulations of merging binary stars.

A Customized Python Module for
CFD Flow Analysis within VisTrails
By Joel E. Tohline, Jinghua Ge, Wesley Even, and Erik Anderson

May/June 2009� 69

Finally, the module VTKCell directs
this scene to the VisTrails interactive
spreadsheet.

In this initially constructed base
workflow, VisTrails pipes the 3D vec-
tor field representing the momentum
density distribution from the vtk­

PLOT3DReader module directly into
each of the eight Draw_Streamline
module groups. This base workflow—
which VisTrails assembles using ge-
nerically available vtk modules—lets
us examine the behavior of stream-
lines in our binary mass-transfer sim-

ulations, but only from the frame of
reference, Ω0, in which we originally
performed each simulation (see Fig-
ure 2b, labeled ∆Ω = 0.00).

Customized Python Module
To make it possible for us to exam-

(a) (b) (c)

Figure 1. Screenshots of the window within the VisTrails builder that displays user-designed visualization workflows. (a) The
base workflow we constructed from standard VTK-based modules. (b) A segment of the workflow that’s hidden inside the
Draw_Streamlines group module. (c) The workflow we used to create Figure 2, in which we inserted the SwitchCoord
module containing our customized Python script into the base workflow.

(a) (b) (c) (d) (e)∆Ω = +0.02 0.00 –0.02 –0.06–0.041

Figure 2. Screenshot of the VisTrails spreadsheet after we used five different values of Omega_frame (∆Ω) to execute our
customized workflow. Each 3D-rendered image displays eight equatorial-plane streamlines and a pair of isodensity surfaces
(lower density surface colored blue; higher density surface colored red) that outline the structure of both stars as well as the
connecting mass-transfer stream. The propagation time is the same for all eight streamlines; along six streamlines, VisTrails
carries out the integration in both directions from the location marked by a small colored sphere.

V is u a l i z a t i o n C o r n e r

70� Computing in Science & Engineering

ine the properties of binary mass-
transfer flows from reference frames
that have a range of different angu-
lar frequencies of rotation, Ωframe =
(Ω0 + ∆Ω), we wrote a Python-based
module—SwitchCoord—for inser-
tion into the base VisTrails workflow.
Figure 1c shows our resulting cus-
tomized VisTrails workflow; it differs
very little from the base workflow.
The sidebar shows the complete Py-
thon source code from our custom-
ized module. The code segment that
performs the required physics analysis
is short and straightforward. In par-
ticular, the SwitchCoord module
performs the following operations at
each grid vertex

converts the (•	 x, y) Cartesian to (R,
φ) cylindrical coordinates;
divides the momentum components •	
by density to obtain the velocity
components if the density is greater
than minp (otherwise, it sets the ve-
locity components to zero);
shifts the azimuthal velocity com-•	
ponent vφ to a new, rotating frame
of reference by adding R× ∆Ω;

converts the cylindrical velocity •	
components to Cartesian velocity
components; and
normalizes the velocities to the •	
maximum velocity maxnorm found
across the domain where densities
are greater than minp.

We designed the output ports on
SwitchCoord to provide access to the
same type of structured arrays that
vtkPLOT3DReader generates. But, in
our customized VisTrails workflow,
which includes SwitchCoord (see
Figure 1c), the 3D vector field that
VisTrails pipes into each of the eight
Draw_Streamline module groups
represents the fluid’s velocity distribu-
tion as viewed from the rotating frame
of reference that the floating-point
scalar, Omega_frame, specifies.

Interpretation of Results
Figure 2 displays 3D renderings of
the flow from one of our binary mass-
transfer simulations as generated by
our customized VisTrails workflow.
We have generated images assuming
five different frame rotation frequen-

cies, as specified by ∆Ω. Aside from
labeling ∆Ω values under each image,
we produced Figure 2 by simply tak-
ing a screenshot of the VisTrails inter-
active spreadsheet. The spreadsheet
feature has proven to be extremely
useful in this analysis because it facil-
itates the side-by-side comparison of
scenes that VisTrials has rendered us-
ing different parameter values. And,
although we can’t demonstrate it here
in print, VisTrails lets users zoom,
pan, and interactively rotate all 3D-
rendered scenes simultaneously.

We’d like to determine which value
of ∆Ω provides the best measure of
the binary star system’s true orbital
period. As expected, for all five choices
of ∆Ω, we found the highest velocities
(marked by the longest streamlines)
along the relatively low-density mass-
transfer stream that connects the two
stars. Material from the donor star (in
the lower half of each rendered image
in Figure 2) flows toward its stellar
companion, reaching supersonic ve-
locities before impacting the compan-
ion. An oblique shock front—whose
location is delineated by kinks in the

(a) (b)

Figure 3. A magnified view of multiple streamlines in the region of the flow where the mass-transfer stream originates. (a)
Reproduction of Figure 3 from the published work of Stephen Lubow and Frank Shu5 (used with permission). (b) A magnified
segment of the flow depicted in Figure 2, image D (∆Ω = −0.041) from this work; we’ve numbered the colored streamlines
to aid in our comparison with the Lubow and Shu image.

May/June 2009� 71

pink, blue, and orange streamlines—
terminates the component of motion
perpendicular to the companion’s sur-
face. Motion transverse to the shock
becomes orbital motion in a thick,
low-density disk that surrounds the
companion star.

For all five choices of ∆Ω, the flow’s
behavior in the vicinity of the mass-
transfer stream very closely resembles
the behavior that Stephen Lubow and
Frank Shu5 predicted more than 30
years ago. Figure 3b shows a magni-
fied view of this region of the flow
from our simulation, assuming ∆Ω =
–0.041. We’ve reoriented this magni-
fied image and numbered the stream-
lines to facilitate comparison with the
Lubow and Shu illustration, which
we’ve reprinted with permission here
(see Figure 3a). Rather than conduct-
ing a fully self-consistent 3D simu-
lation—which was computationally
impractical at the time—Lubow and
Shu used a mathematical perturba-
tion analysis to estimate what the flow
should look like in the vicinity of the
“L1” Lagrange point, as viewed from
a frame of reference rotating with the
correct instantaneous orbital frequen-
cy, Ωframe. The close resemblance be-
tween our 3D simulation results in the
vicinity of the L1 Lagrange point, and
the behavior that Lubow and Shu pre-
dicted provides a useful point of veri-
fication for our work.

Each star’s center of mass should
lie near the center of the highest den-
sity region inside each star (outlined
by the nearly spherical, red isoden-
sity surfaces in Figure 2). When we’ve
assigned ∆Ω a value that properly
identifies the frequency at which the
centers of mass of the two stars are or-
biting one another, we should see very
little residual motion near the donor
star’s center—that is, the streamlines
rendered in white and green in Figure

2 should be quite short. Furthermore,
we expect that this residual motion
should translate into concave stream-
line segments, mapping out simple
circular motion around the center of
the donor star. When we’ve identi-
fied the correct value of ∆Ω, we also
should expect the returning stream-
line nearest the mass-transfer stream
(colored yellow) to remain inside the
donor. With these ideas in mind, we
judge ∆Ω = −0.041.

Finally, we note that as the pink
and blue streamlines curve around
the companion star, they extend out-
side the companion’s disk (as outlined
by the blue isodensity surface) in the
rendered images with the most nega-
tive specified values of ∆Ω. These
two streamlines appear to align most
neatly with the distribution of mate-
rial in the disk in Figure 2a, that is,
for ∆Ω = + 0.02. This suggests that
there’s a characteristic frequency as-
sociated with motion in the compan-
ion’s disk that’s different from the
binary orbital frequency.

W e’ve illustrated how, at one par-
ticular instant during a CFD

simulation, we can determine the or-
bital period of our simulated binary
star system. With this customized
visualization tool in hand, we’re in a
position to determine how the orbital

period and other characteristic fre-
quencies vary with time throughout
each simulation. More significantly,
we now appreciate how we can modify
otherwise standard VisTrails work-
flows to perform any of a variety of
analysis tasks that are customized to
our research project needs.�

Acknowledgments
Progress on this project has benefit-
ted significantly from interactions with
Claudio Silva, Juhan Frank, Patrick
Motl, and Zach Byerly. This work
has been supported, in part, by fund-
ing from the US National Science
Foundation (AST-0708551, DGE-
0504507), the US Department of En-
ergy, NASA (ATP-NNX07AG84G),
and IBM; mass-transfer simulations
were made possible via allocations of
computing time on TeraGrid resources
(TG-MCA98N043) at the National
Center for Supercomputer Applications
(NCSA) and through the Louisiana
Optical Network Initiative (LONI).

References
J.E. Tohline, “Scientific Visualization: A Neces-1.	
sary Chore,” Computing in Science & Eng., vol.
9, no. 6, 2007, pp. 76–81.

M.C.R. D’Souza et al., “Numerical Simula-2.	
tions of the Onset and Stability of Dynamical
Mass Transfer in Binaries,” Astrophysical J.,
vol. 643, no. 1, 2006, pp. 381–401.

P.M. Motl et al., “The Stability of Double 3.	
White Dwarf Binaries Undergoing Direct

Terminology

One well-defined characteristic of a binary star system is its orbital period,
P. If the stars are in circular orbit around one another, a binary system

will appear to be stationary when viewed from a frame that’s rotating with
an angular frequency Ωframe = 2π/P. When modeling mass-transferring binary
star systems, we’ve found it advantageous to perform each computational
fluid dynamic (CFD) simulation on a cylindrical-coordinate grid that rotates
with a frequency Ω0 = 2π/P0, where P0 is the binary system’s orbital period
at the beginning of the simulation. As mass and angular momentum are
transferred from one star to the other throughout the simulation, however,
the binary system’s orbital period—and associated value of Ωframe—will vary.
As explained in the main text, we used VisTrails to measure ∆Ω = (Ωframe – Ω0)
and, hence, the instantaneous orbital period P = P0/(1 + P0∆Ω/2π) at any time
during a simulation.

V is u a l i z a t i o n C o r n e r

72� Computing in Science & Engineering

Impact Accretion,” Astrophysical J., vol. 670,
no. 1, 2007, pp. 1314–1325.

L. Bavoil et al., “Vistrails: Enabling Interactive 4.	
Multiple-View Visualizations,” 2005; www.
sci.utah.edu/~csilva/papers/vis2005b.pdf.

S.H. Lubow and F.H. Shu, “Gas Dynamics of 5.	

Semidetached Binaries,” Astrophysical J., vol.
198, no. 1, 1975, pp. 383–405.

Joel E. Tohline is a professor at Louisiana

State University. His research interests include

astrophysics, computational fluid dynamics,

and high-performance computing. Tohline

has a PhD in astronomy from the University

of California, Santa Cruz. He’s a fellow of the

American Association for the Advancement

of Science, and a member of the Internation-

al Astronomical Union, the American Astro-

nomical Society, and the American Physical

Society. Contact him at tohline@lsu.edu.

Jinghya Ge is a visualization consultant at

the Center for Computation & Technology

(CCT) at Louisiana State University. Her re-

search interests include scientific visualiza-

tion, computer graphics, and distributed

computing. Ge has a PhD in computer sci-

ence from the University of Illinois, Chicago.

Contact her at jinghuage@cct.lsu.edu.

Wesley Even is an NSF/IGERT fellow in the

Department of Physics and Astronomy at

Louisiana State University. His research fo-

cuses on the modeling of mass transfer in

double-white-dwarf binary star systems.

Contact him at weseven@physics.lsu.edu.

Erik Anderson is a research assistant and

PhD candidate at the University of Utah. His

research interests include scientific visualiza-

tion, signal processing, computer graphics,

and multimodal visualization. Anderson has

a BS in computer science and a BS in electri-

cal and computer engineering from North-

eastern University. Contact him at eranders@

sci.utah.edu.

SwitchCoord Python
Module

Here we present a complete listing of the python code
from our customized SwitchCoord program module.

At the beginning of the “Physics Analysis” segment of the
code, we assign names to the data arrays that have been
acquired as input from vtkPLOT3DReader: pcoords is a
tuple that identifies the Cartesian-based coordinate loca-
tion of each grid vertex, density is a scalar that specifies the
mass density, and momentum is a tuple that specifies the
values of the cylindrical-coordinate-based vector momen-
tum at each grid vertex. We detail the remaining logic of
the physics analysis in the main text.

import core.modules.module_registry

from core.modules.vistrails_module import

Module, ModuleError

import vtk, math

version=“0.0.0”

name=“SwitchCoord”

identifier=“edu.lsu.switchcoord”

class SwitchCoord(Module):

 def compute(self):

 minp = self.

getInputFromPort(“min_density”)

 Domega = self.getInputFromPort(“Domega”)

 dataset=self.getInputFromPort(“dataset”)

 output = self.create_instance_of_type(

 ‘edu.utah.sci.vistrails.vtk’,

 ‘vtkStructuredGrid’)

 output.vtkInstance = vtk.

vtkStructuredGrid()

 mydata=output.vtkInstance

 mydata.DeepCopy(dataset.vtkInstance)

 self.op(mydata, minp, Domega)

 self.setResult(“changed_dataset”,

output)

 #################################

 ##

 ## Begin: Physics Analysis

 ##

 #################################

 def op(self, mydata, minp, Domega):

 extent=mydata.GetExtent()

 pcoords = mydata.GetPoints().GetData()

 density = mydata.GetPointData().

GetScalars(“Density”)

 momentum = mydata.GetPointData().

GetVectors(“Momentum”)

 maxnorm = 0.0

 for i in range(0, mydata.

GetNumberOfPoints()):

 [x, y, z] = pcoords.GetTuple3(i)

 [_v1, _v2, _v3] = momentum.

GetTuple3(i)

 p = density.GetValue(i)

 r = math.sqrt(x*x + y*y)

Our experts.
Your future.

www.computer.org/byc

may/June 2009 73

 phi = math.atan2(y, x)

 if p < minp:

 vx=vy=vz=0

 else:

 vr = _v1 / p

 vphi = _v2 / (p) + r * Domega

 vz = _v3 / p

 vx = vr * math.cos(phi) ­ vphi *

math.sin(phi)

 vy = vr * math.sin(phi) + vphi *

math.cos(phi)

 norm = math.sqrt(vx*vx + vy*vy +

vz*vz)

 if norm > maxnorm:

 maxnorm = norm

 momentum.SetTuple3(i, vx, vy, vz)

 for i in range(0, mydata.

GetNumberOfPoints()):

 [vx, vy, vz] = momentum.GetTuple3(i)

 vx = vx/maxnorm

 vy = vy/maxnorm

 vz = vz/maxnorm

 momentum.SetTuple3(i, vx, vy, vz)

 #################################

 ##

 ## End: Physics Analysis

 ##

 #################################

def initialize(*args, **keywords):

 reg=core.modules.module_registry.registry

 reg.add_module(SwitchCoord)

 reg.add_input_port(SwitchCoord,

“scalar_range”,

 [core.modules.basic_modules.Float,

 core.modules.basic_modules.Float])

 reg.add_input_port(SwitchCoord,

“min_density”,

 core.modules.basic_modules.Float)

 reg.add_input_port(SwitchCoord, “Domega”,

 core.modules.basic_modules.Float)

 reg.add_input_port(SwitchCoord, “dataset”,

 (reg.get_descriptor_by_name(

 ‘edu.utah.sci.vistrails.vtk’,

 ‘vtkStructuredGrid’).module))

 reg.add_output_port(SwitchCoord,

“changed_dataset”,

 (reg.get_descriptor_by_name(

 ‘edu.utah.sci.vistrails.vtk’,

 ‘vtkStructuredGrid’).module))

def package_dependencies():

 import core.packagemanager

 manager = core.packagemanager.

get_package_manager()

 if manager.has_package(‘edu.utah.sci.

vistrails.vtk’):

 return [‘edu.utah.sci.vistrails.vtk’]

 else:

 return []

EnginEEring
and applying
thE intErnEt

IEEE Internet Computing magazine reports on
emerging tools, technologies, and applications
implemented through the Internet to support
a worldwide computing environment.

Upcoming issUEs:

IPTV•	
Emerging Internet Technologies •	
and Applications for E-Learning
Cloud Computing•	
Unwanted Traffic•	

www.computer.org/internet/
The Functional Web • Fiber Network Models • E-Learning

 IEEE IN
TERN

ET CO
M

PU
TIN

G

M
A

RCH
 • A

PRIL 2009
D

EPEN
DA

BLE SERVICE-O
RIEN

TED CO
M

PU
TIN

G

VO
L. 13, N

O
. 2

W
W

W
.CO

M
PU

TER.O
RG

/IN
TERN

ET/

M
A

R
C

H
 •

 A
P

R
IL

 2
0

0
9

DEPENDABLE SERVICE-ORIENTED COMPUTING

