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•  Low-energy theory: Coulomb-interacting Dirac fermions 

•  Theoretical research: Neglects effect of Coulomb interactions 

•  Compute interaction corrections for several quantities 
Renormalization Group Hertz PRB 76, Millis PRB  1993 

Graphene: at a quantum critical point  

•  Interaction effects in optical transparency?  

Nair et al Science 2008 

Outline 

•  Graphene: One-atom thick sheet of graphite 



Graphene 
•  Single-atom thick layer of graphite   
– Theory: Wallace 47, Semenoff 84 

–  Exp’t: Novoselov et al 2004 
          Zhang et al 2005 

•  Model: 
–  Coulomb-interacting fermions on honeycomb lattice 
–  Half-filled: One fermion/site   

Nearest-neighbor hopping   Connects two sublattices 

€ 

a

           fermions on two sublattices 
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Next: Low energy 

•  Kinetic energy H0 = −t ciσcjσ
i, j ,σ
∑



Low-energy theory of graphene 
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!   “Conduction band”: two inequivalent 
nodes in Brillouin zone 

•  Eigenvalues " Energy bands  

!   “Valence band”: Minus this 
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E(k) ≅ ±v |k |
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v = 3ta /2Velocity 

•  Cone-like dispersion near nodes: 

Conduction 
band 

Valence  
band 

•  Effective Hamiltonian near nodes: 
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i =1,...4
Spin, node 

•  Applies at low momenta! Cones don’t go to infinity! 
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k << Λ ≅ a−1



Free fermions on the honeycomb lattice 

H = ψi(p)[vp ⋅σ ]ψi(p)
p,i
∑ †

   

•  “Relativistic” low-energy Hamiltonian 

Two-component 
spinor    

Pauli matrices.    

•  Condensed-matter phenomena:    

Dirac fermions in B-field Novel Quantum Hall effect    

Photoemission, Infrared spectroscopy    

Zhang et al Nature 2005    

Bostwick Nat. Phys 2007; Li Nat. Phys. 2008  
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v ≈ c /300Observe  Novoselov Nature 2005 

•  What about Coulomb interaction?    
Unscreened 

Next: Full Hamiltonian 
(No Fermi surface)    

•  “Relativistic” quantum field theory phenomena   

Zitterbewegung    Katsnelson 2006 

“jittery motion” of Dirac fermions 
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n(r) = Ψi(r)Ψi(r)
i=1

N

∑Coulomb interaction 

•  Is the Coulomb interaction important? 

Full Hamiltonian: Coulomb  
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d2rd2r'∫ n(r)n(r ') e2

ε r - r'
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H = Ψi(p)[vp⋅ σ]Ψi(p)
p,i
∑

†
   

Kinetic energy 

Fine  
structure  
constant   
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αQED =
e2

c
=
1
137

Quantum  
Electrodynamics: 
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α =
e2

v
Dimensionless  

interaction strength •  Graphene: 
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α = 300αQED ≈ 2.2
Note:                      !  v ≈ c / 300

•  Graphene’s fine-structure constant can be quite large…  

Dielectric screening: α =
e2

εv
Substrate-dependent ε =1 in vacuum 

Next: Scaling… 



Scaling analysis 
•  Relative importance of kinetic energy & potential energy?   

€ 

EKE ∝εFn ∝ n2!  Kinetic energy per particle:  

!   Low density:  
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ECoulomb >> EKinetic Wigner crystal 
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ECoulomb << EKinetic!   High density:  Strong screening regime 
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ε p =
p2

2m
!  Usual 2D Fermi gas: 

in 2D… εF ∝n

!  Potential energy per particle:  V (r) = e
2

r r ≈ 1
n

Typical length scale 
is interparticle 

spacing… 
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ECoulomb ∝ n n ∝ n3 / 2

Interparticle spacing Density of other electrons 
to interact with 

Next: What about graphene? 
•  Relative importance depends on density! 



Scaling analysis: Graphene 

EKE ∝ pFn∝n
3/2

!  Kinetic energy per particle:  

€ 

ECoulomb ∝ n n ∝ n3 / 2

•  Now, the kinetic energy has the Dirac form! 

εp = vp!  Graphene 

!  Potential energy per particle:  (Same as previous) 

Relative importance of 
Kinetic & Coulomb  
independent of n! 

No characteristic length scale 

•  Scale invariance:  Like at a quantum critical point 

!   External perturbations: Introduce length scales 

–  Applied Magnetic field:    B =
c
2e

1
B

Magnetic length 

–  Finite temperature:   de Broglie wavelength λT =
2πv
kBT (different for Dirac!) Next: RG 



Wilsonian renormalization group 
Gonzalez Nucl. Phys. B 94, Khveshchenko PRB 06, 
Son PRB 07, DES & J. Schmalian PRL 07, Herbut et al PRL 08, … 

•  Graphene Hamiltonian: 

Filled 

Empty 

!  Quasiparticle velocity v ≈ c / 300

!  Coulomb interaction parameter α = e
2

v
≈ 2.2

!  Ultraviolet (large momentum) cutoff Λ ≈

a

Theory in BZ  
Became Dirac theory 

p < Λ!  Trace over states with 

•  Idea behind renormalization group (RG): 

How does the theory 
change if we change 

the cutoff?  

!  Partial trace over high momentum states Λ / b < p < Λ

Since coupling is smaller, the 
theory is easy to solve! 

Next: Other 
parameters? 

!  New theory: Lower cutoff, smaller coupling    α(b) = α

1+ 1
4
α lnb

•  Partition function: Z = Trexp −βH[Ψ(p),Ψ(p)][ ] β =1/ (kBT )



•  How do chemical potential & temperature evolve under RG? 
 Geim & Novoselov Nat. Mat. 2007  

Electron density 
•  Fermion density: adjustable via doping or external gate Vg 
  

–  Impose chemical potential    

€ 

µ↔ Vg 
  

€ 

n(µ,T,α) = b−2n(µ(b),T(b),α(b))
•  Density scaling relation:   

 What we want In renormalized system 

€ 

α(b)

€ 

T(b) large 

small 

•  Need: Choice for b  renormalization condition Next: RG condition 

Intrinsic:  

€ 

µ = 0,n = 0  (No Fermi surface) 

Hole doped:   (h Fermi surface) 

€ 

µ < 0,n < 0
Electron doped:   (e Fermi surface) 

€ 

µ > 0,n > 0

€ 

µ(b) =
µb

1+
1
4
α lnb

€ 

T(b) =
Tb

1+
1
4
α lnb

 Chemical potential 
& temperature 

increase: 



Renormalization condition 

 Magnetic field 

•  Graphene: critical point at   

€ 

T = µ = B = n = 0

•  Relevant perturbations: Grow under RG, leave vicinity of critical point 

!  E.g., if original system is at nonzero T, renormalized system 
has larger T 

Nodal “Dirac” approximation breaks down! 

!   Terminate RG flow when perturbation reaches UV scale (bandwidth)  

kBT (b) = vΛ

•  Graphene at fixed density n but low T: n(b) = b2n
!   Terminate RG flow when           gets too large!              n(b)

n(b) = a−2

Renormalized density            lattice scale 

•  Question: What does this get us?    Interaction corrections to equations for 
graphene obesrvables  



Compressibility at low T 

Free Dirac Fermions 
Log correction depends on density 

•  Scanning Single electron transistor: Measure 

€ 

κ−1 = ∂µ
∂n

κ −1[n,α]= b(1+ 1
4
α lnb)κ −1[n(b),α(b)]

•  RG equation for inverse compressibility 

 What we want In renormalized system, approximate α(b) ≈ 0

215
0 104 −×≈ cmn

See Also: Hwang et al PRL 07 

κ −1 ≅
π
4 n

v 1+α
4
ln n0

n
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•  Inverse compressibility of interacting graphene 

Inverse compressibility J. Martin, N. Akerman, G. Ulbricht, T. 
Lohmann, J. H. Smet, K. von Klitzing, 

 A. Yacoby, Nat. Phys. (2007) 

•  Looks like: Density-dependent velocity! 
Need: Many decades of data to observe… v(n) = v 1+α

4
ln n0

n
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Recent compressibility data 
J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. von Klitzing, 
 A. Yacoby, Nat. Phys. (2007) 

Substrate: Alters 
dielectric const.   

€ 

α =
e2

εv

 Graphene in vacuum 

€ 

α = 0 Doesn’t fit…. 

•  Interactions necessary to understand data 
– Best fit  

€ 

ε = 5.5
•  Difficult to observe ln(n) dependence 

– Uncertainty in velocity Next: Other experiments? 
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κ−1 ≅ v π
4 n

1+
α
4
ln n0

n
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•  We attempted to fit the data: 
DES & J. Schmalian PRL 2007 



Shubnikov-de Haas oscillations 

•  SdH Oscillations: Also measure v at fixed n!  

“Dirac cones reshaped by interaction effects in suspended graphene” 
 Elias, et al Nat. Phys. 8, 172 (2012) 

v(n) = v 1+α
4
ln n0

n
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Effective velocity at 
fixed density: 

 Diverges logarithmically for 
vanishing carrier density 

!   Resistivity oscillates with applied B field  Measure cyclotron mass, 
and velocity 

•  Data: Consistent with this picture: 

Next: Does the velocity 
really diverge? 



Back to inverse compressibility… 

!   We assumed: density is the  
dominant perturbation 

!   All experiments at finite T 
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κ−1 ≅ v π
4 n
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α
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•  Low-T inverse compressibility vs. carrier concentration: 

•  RG analysis of finite-T inverse compressibility at n=0: 

Free Dirac Fermions Log-T enhancement 
Depends on temperature! 
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κ−1 ≅
πv 2

4T ln2
1+
1
4
α lnT0

T
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Result: 
KT 4

0 108×≈ Characteristic temp. 

Next: Heat Capacity 

Temperature dependence of  
Inverse compressibility of 

intrinsic graphene! 



Specific heat capacity 
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γ ∝
n

v 1+
α
4
ln n0

n
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C ≅ γTMetallic 

€ 

µ >> T–  High density (            ) € 

C ≅
9Nς(3)
2πv 2

T 2

1+
1
4
α ln(vΛ /T)

' 

( ) 
* 

+ , 

2

–  High temperature  

€ 

µ << T
•  Two regimes: Is temperature or density (chemical potential) dominant?  

Interacting Dirac fermions 

Vafek PRL 07 C∝ T 2

ln(vΛ /T )[ ]2

Low-T behavior 

Fermi liquid! (electron or hole) 

Next: Phase Diagram 

•  RG: Tells us how to sum perturbative corrections 

•  Heat capacity coefficient also measures density-dependent velocity 



Phase diagram: Crossover behavior 
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C∝ T 2

log2 T

TC γ∝
•  Dashed line: Crossover between two regimes   Next: Transparency    



Aperture partially 
covered by graphene 

Transmittance: 

€ 

t = 97.7%

•  Theory*:  

€ 

t(ω) =
1

(1+ 2πσ(ω) /c)2
Measures conductivity in 

optical regime! 

*Stauber et al PRB 2008 Next: Are interactions important? 

Optical transparency of graphene 

•  Graphene nearly transparent  
Nair et al, Science 2008: “Fine structure constant defines visual transparency 

               of graphene” 
See also Kuzmenko et al 
PRL 2008 -- graphite 

What determines the deviation from 
perfect transparency?  



Optical transparency of graphene 

•  Apparently not: Nair et al results consistent with noninteracting graphene 

€ 

t

€ 

λ(nm)

•  Question: Why can we neglect Coulomb interaction?  

–  No log prefactors in  

–  Small perturbative correction Next: Are interactions important? 

€ 

σ ω( )
€ 

t(ω) =
1

(1+ παQED /2)
2•  Transmission  Fine structure constant! 
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σ 0 =
e2

4
“Universal” 
Ludwig et al PRB 94 
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tiny correction for                 ;  NOT small in optical range!  

€ 

ω → 0

Herbut, Juricic, Vafek, PRL 08 
Mishchenko  Europhys. Lett. 08 
DES & J Schmalian PRB 09 
Juricic et al PRB 10 
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α(b*) ≅ α

1+
α
4
ln vΛ /ω( )

•  Low-T regime: 

€ 

ω(b*) = vΛ

•  Perturbation theory in renormalized: 

€ 

σ(ω,T,α) ≅σ 0(ω,T) +α(b)σ1(ω,T) +α(b)2σ 2(ω,T) + ...
keep… 

Conductivity of clean graphene 

€ 

σ(ω,T,α) =σ (ω(b),T(b),α(b))•  Scaling:  

Previously:                 in renormalized theory   

€ 

α(b) ≈ 0

•  What is the coefficient     ?  C

Calculate some diagrams… 

Next: Three different results in literature! 

Now we do 
perturbation 

theory! 



Calculation of the optical transparency of graphene 

σ =
e2

4
1+ Cα

1+ 1
4
α ln vΛ /ω( )
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•  Our motivation: Initially two results in the literature for  C

C = 25− 6π
12

≅ 0.512!  Herbut, Juricic, Vafek, PRL 08: 

!  Mishchenko EPL 08: C = 19− 6π
12

≅ 0.012

Would give a large correction! 

Would give a small correction 

!   Diagrams are separately divergent, can be combined to give different answer 
How to get the right answer?   

€ 

∇ ⋅ j+ ∂ρ
∂t

= 0

€ 

Qµ jµ (Q) jν (−Q) = 0

!   Diagrams must satisfy current conservation! 

•  Our insight: Herbut et al used Kubo formula Phys. Rev. B 80, 193411 (2009) 

•  Imposing this: Tells us how to combine divergent diagrams 
!   Obtain result due to Mishchenko… Next: But wait! 



Recent work: 
!  Juricic et al PRB 2010: Regularize graphene in a different way   

•  Their claim: cannot use a UV cutoff for graphene 

•  Obtain a third result: C = 11−3π
6

•  Analytically continue spatial dimension d = 2−ε

!  What is the resolution? 

!  One cannot study graphene in spatial dimension 2 and regularize integrals 

“epsilon expansion” 

•  Possibility 1: Latest Juricic et al result is correct: 

!  Note: Original Mishchenko calculation had no cancelling divergences 

•  Possibility 2: Latest Juricic et al result is incorrect: 
!  “epsilon expansion” is not really probing the AC conductivity 
!  We can obtain Mishchenko result by implementing epsilon expansion differently 

and using different regularization schemes 
!   See also Abedinpour et al PRB 2011 – also obtain Mishchenko result 

Next: What do experiments say? 

!  All these difficulties arise because of the nodal approximation!  Why not use the 
original lattice theory?   
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Conductivity of clean graphene 

σ (ω) = e2

4
1+ Cα
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t(ω) =
1

(1+ 2πσ(ω) /c)2
Transparency: 

Herbut, Juricic, Vafek 
2008  

Juricic, Vafek, Herbut 
2010 

Mishchenko 08; DES 
& J. Schmalian 09 

Noninteracting! 

!  Only a very small value of      is consistent with experiments! C



Concluding remarks 

•  Graphene: Dirac fermions with Coulomb interaction (Marginal) 

!   Interaction effects: Log corrections to free case (Dirac fermions) 

!   Regularization method must preserve conservation laws 

•  We resolved discrepancy with earlier Kubo formula calculation    

•  Optical transparency probes conductivity 
large!   
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C = 19− 6π
12

≅ 0.012But 
Small  correction! 

Mishchenko Europhys. Lett. 2008 

!   Interactions only renormalize velocity:  
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v→ v 1+
α
4
ln vΛ /T[ ]
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•  Renormalization group: Scaling equations for various quantities  

!   Specific heat, compressibility, diamagnetic susceptibility, dielectric 
!     function, … 

(Leading order) 


