
Colliding black holes with
perturbation theory

• Setting up the initial data and evolving: the
Misner example.

• Other families of data: Brill-Lindquist,
Bowen-York, Baker-Puzio-Krivan-Price.

• Results of evolutions.



We need to provide initial data to the Einstein equations. By this
we mean a three dimensional metric on a three surface and its
time derivative.

The initial value problem in general relativity is not free. For 
people unfamiliar with this, it is good to examine as an example
the case of Maxwell fields. Suppose one wishes to evolve in time
an electromagnetic field. As initial data one could set up the
electric and magnetic fields and their time derivatives. Unfortunately
not any vector field will work as initial data. In vacuum the electric
field has to satisfy div E=0 at any time, in particular at the initial
time. Therefore the initial data has to satisfy this (linear) equation.

In general relativity the corresponding equations are “G00” and
“G0i”. These equations only involve the metric and its first time
derivatives and therefore constrain the initial data.



The initial value problem for general relativity is non-linear. This
is physically understandable. One cannot superpose two non-trivial
solutions of general relativity without taking into account “the mutual
attraction”. This is ubiquitous in the two black hole problem.

What one does normally do for binary situations, like two black holes
that will collide? The typical attitude has been to cast the equations
in such a way that the equations that govern some of the variables
are linear. One then obtains a solution for those equations simply
superposing known solutions for individual black holes. One then
proceeds to solve the remaining equations in full non-linearity.

It is clear that this procedure may yield appropriate initial data only
in certain circumstances. Since one does not have control on the
non-linear equations one solves, one in the end is left with “whatever
initial data the method provides”! There will never be a way out of
this!



The resulting solutions usually resemble two black holes, but there
usually is added spurious gravitational radiation. The amount of 
spurious radiation is “what we need to add in order for some of the
variables of the problem to simply superpose linearly”. It is artificial.

For most solutions the amount of spurious radiation introduced 
decreases if the black holes are far away (the farther the black holes
the more natural is to linearly superpose variables). 

So in principle a strategy would be to set up initial data with the black
holes far away, evolve them for a while allowing the system to
“flush itself” of spurious radiation, and then one ends up with two
black holes plunging into a collision under more or less realistic
circumstances.

The main problem with this strategy is that it is very costly (currently
it is actually impossible) to evolve binary black holes long enough
to “flush out the radiation”. 



In spite of these drawbacks, we will discuss here one of the most 
popular methods of constructing binary black hole families of 
initial data, the conformally flat solutions due to York, Bowen, 
Misner and other collaborators.
J. York in “Sources of gravitational radiation”, L. Smarr, ed, Cambridge 1979
J. Bowen, J. York, Phys. Rev. D21, 2047 (1980)
C. Misner, Phys. Rev. 118, 1110 (1960).
D. Brill, R. Lindquist, Phys. Rev. 131, 471 (1963).



Initial data: the conformal approach

We start by considering the usual decomposition of space-time into
3+1 dimensional space and time. The space-time metric is written 
as,
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Where N is the lapse, Na is the shift vector and gab is a three
dimensional spatial (positive-definite) metric.

The extrinsic curvature is defined as

and plays the role of “time derivative” of the metric, where n is a 
vector normal to the foliations. 
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The “G00” and “G0i” components of the Einstein equations, solely
depend on the spatial metric and extrinsic curvature,
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The first set of three equations is usually called the “vector constraint”
or “momentum constraint”. The last equation is the 
“(super)Hamiltonian constraint” or “scalar constraint”. K is the trace
of the extrinsic curvature and 3R is the Ricci curvature of the three
metric.

These equations are non-linear, elliptic (no time derivatives)
and they hold at every spatial slice. They constrain the initial data
of general relativity, which is given by the three metric and the
extrinsic curvature, which still carries a certain amount of freedom.



We will not engage in a full discussion of these equations here but
jump immediately to a technique for solving them.

The technique (or if you wish a series of choices) consists in 
assuming that the spatial metric is conformally flat and the trace
of the extrinsic curvature vanishes,
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We get for the constraints,
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Where the hats denote flat space operators (gradients and Laplacian).



We are therefore left with a set of flat space equations to solve.
The first set of equations is linear, therefore it is reasonably easy
to solve and we can superpose solutions. (J. York, JMP14,456 (1973))

York has found solutions for these equations that have ADM
momentum and angular momentum at spatial infinity. 
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Where P and S are the (three)-momentum and angular momentum
of the space-time, and n is a unit normal pointing out from the
origin.
In terms of these variables, the ADM momentum and angular
momentum of the space-time at spatial infinity are given by,
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But how do we know these solutions have anything to do with 
black holes? Actually, solutions with one hole of this sort were
studied by York and Cook and indeed they found apparent horizons.
So the space-time has momentum P and an apparent horizon.
Later studies have treated these space-times as a perturbation of a 
single hole and found that they indeed correspond to a black hole
with additional radiation (small for small values of the momentum).
 R. Gleiser, C. Nicasio, R. Price, JP, PRD57, 3401 (1998).

One can now superpose two of these solutions and solve the Hamiltonian
constraint to find initial data that correspond to two black holes.

In fact, we do not even have the complete initial data, we have not
tackled the Hamiltonian constraint. This equation can be tackled
either numerically or approximately. Before doing that we need to
discuss the issue of boundary conditions.



For a single hole the spatial surface we are trying to construct is 
OK outside the hole. What about inside the horizon? Well, we do not
even know where the horizon is unless we evolve the space-time.
Therefore, in which domain should we integrate these elliptic equations?
Again, we face a choice.

One of the choices is to make the spatial surface look like a 
throat connecting two asymptotically flat universes. In such case
one chooses to make the whole spatial slice symmetric under
inversion. The idea is that one asymptotically flat universe will
represent the exterior of the black hole and the other one the
interior. This corresponds to the traditional picture of the “wormhole”.

In practice it means that one pick a radius a, and requires that the
solution be symmetric under inversion through the sphere at radius
a. When one has more than one throat, one has to require that inversion
through all throats be implemented. This can be done by the method
of images, but it might take summing an infinite summation.
This was studied in great detail by G. Cook and others, Phys.Rev.D47:1471,(1993) 



This inversion type of solution led to the first binary black hole
solution to the initial value problem, found by Misner. He 
considered “momentarily stationary” black holes at a given 
separation. That meant Kab=0. The Hamiltonian constraint then
simmply becomes,
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And one wishes to find solutions which respect the inversion 
symmetry through two throats. Misner accomplished this by 
considering the solution of the Laplace equation in bi-spherical
coordinates. He starts from an ordinary, flat “donut” (torus),
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And notices that if one could “break up” the donut at π=0 and identify
the points of the breakup one would end up with a wormhole. 



To achieve this, Misner notices that the metric of flat space in 
bi-spherical coordinates looks like a conformal factor times a 
donut,
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And since flat space obviously solves the Hamiltonian constraint,
if one could make the above solution periodic in π, one would have
the desired result. This can be achieved by superposition (method
of images),
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This solution is periodic with period 2µ0. This parameter governs
the ratio of radius to separation of the holes. For a fixed radius it
measures the separation of the holes.



If one compares with the asymptotic (µ2+θ2)->infinity form of the
Schwarzschild metric in bispherical coordinates,
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One finds that the Misner initial data has an ADM mass of,
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And the separation of the throats can be found by computing the
integral along the throat of the shortest closed loop through the
wormhole
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This integral can indeed be evaluated in closed form! Its expression
is given in terms of elliptical integrals (see Misner) and is a function
of µ0.



Brill and Lindquist considered the solution of the same problem as 
Misner, but without requiring symmetry through the throats. Their
solution for the conformal factor is remarkably simple,
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It is essentially given by the Newtonian potential of each hole!

What can one do for solutions with momentum? One can generalize
both the Misner and Brill-Lindquist solutions. Cook found the 
generalization of the Misner solutions and Brandt and Bruegman the
Brill-Lindquist generalization to the case of momentum. 

An interesting aspect is that for “slowly moving” holes one can find
an approximate solution. Since the extrinsic curvature is linear in the
momentum of the holes (either linear or angular), if the black holes
are slowly moving, the value of Kab will be small.



Therefore the right hand side of the Hamiltonian constraint will
be small too, and at a zeroth level of approximation one can ignore
it. What we are saying is that if one takes a conformal factor that
solves the Hamiltonian constraint with zero momentum, and takes
the extrinsic curvature of Bowen-York, one has an approximate
solution of the initial value problem. This procedure can be 
iterated, now solving for the order P2 correction to the conformal
factor, and so on. 

Since in perturbation theory one is interested in approximate
solutions, it turns out that using approximate initial data is 
good enough for the situations of interest.

There is one caveat: if one wishes to compute the ADM mass
of the spacetime, it is given by the integral,
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Because the ADM mass depends solely on the conformal factor, 
and this in turn satisfies a highly non-linear equation, the ADM
mass is poorly approximated by polynomial approximations.
(For instance, the zeroth order solution we considered had no
contribution to the ADM mass due to the momentum).

Ignoring this last point, the approximate solutions really work very
well. Because the extrinsic curvature is linear in the momentum,
it grows very rapidly when one increases the momentum of the 
collision. The conformal factor, due to the nonlinearity of the 
Hamiltonian, remains bounded. Therefore, as soon as the momentum
grows, the extrinsic curvature (for which we have an exact solution!)
completely dominates the initial data!
J. Baker et. al. PRD55, 829 (1997) 



We are now ready to consider the evolution of the initial data we
have discussed using the “close limit”. That is, we assume we are
considering black holes that are close to each other and therefore
the situation should not differ too much from a single, distorted
black hole.

For historical reasons, we will consider the Misner case (symmetrized
time-symmetric initial data). Here the extrinsic curvature is zero and
the metric,
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Where a is a constant, µ,η are bispherical coordinates and f is the
conformal factor we discussed before.



The bispherical coordinates are related to ordinary polar coordinates
by,
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So we can translate the Misner geometry into more familiar polar
coordinates:
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with the new conformal factor Φ given by,
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And if you were college students taking an electricity and magnetism
class, you would quickly recognize this as the generating function of 
the Legendre polynomials (!).



Which therefore allows us to write the conformal factor as,
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And the only dependence on the separation µ0 is given in the 
coefficient kappa,
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If one now evaluates explicitly the l=0 contribution to the sum, one
can rewrite the conformal factor as,
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With the function F  given by,
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We now notice that we have the three metric written as a conformal
factor that to leading order looks the same as the form of the 
conformal factor of the Schwarzschild metric in isotropic coordinates!

( )22222
4

2
2

2

2 sin
2

1

2
1

2
1

ϕθθ dRdRdR
R

M
dt

R
M

R
M

ds ++





 ++







 +







 −

−= 2

It is therefore natural to identify the coordinate R with the isotropic
radius of Schwarzschild, 
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And we can therefore finally (!) make contact with the usual 
Schwarzschild coordinates. Our spatial metric reads,
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But how is this metric a “perturbation” of Schwarzschild? In order
to see this we need to study the dependence on µ0, which characterized
the separation of the holes. Since all the dependence came through the
kappa coefficients, we just need to know that (this takes a small 
effort to prove, see Anninos et al. PRD52, 4462 (1995)),
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So we could go back now to our notes on the Regge-Wheeler 
notation and, starting with this metric, we could read off the 
various coefficients of the perturbation. Fortunately for us, the
higher order multipoles are heavily suppressed given the explicit
form of kappa. This is really a blessing, since the conformal factor
is raised to the fourth power. If suppression did not happen, one
would obtain contributions for l=2 coming from products of all
the higher order ell’s, yielding the problem intractable in practice!
The suppression allows us to only consider the terms linear in 
kappa for any given ell, even if we wish to consider higher order
ells (See Anninos et al).

These terms turn out to be all even parity, so reading off the 
Regge-Wheeler coefficients,
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And go ahead and compute the Zerilli function,
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And we are ready to evolve! Notice that all the dependence on the
separation of the holes comes linearly as a prefactor of kappa. 
Therefore one can pull this factor out, make one evolution and 
rescale the results to obtain the evolution for all values of the 
separation! The computational economy is astonishing.



If one proceeds along these lines these are the results one gets:

Zerilli function
for a separation
of µ0=1.2 as a 
function of time
for a fixed radial
position, compared
with the full 
numerical relativity
results of Seidel’s
group.



If one computes the radiated energy as a function of the separation
one gets.

The figure
includes 
second order
results. These
are technically
more complex,
but the idea
is similar to 
what we 
described.



To give an idea of the physics involved (since both measures of the
separation are quite artificial when the holes are close), it is worthwhile
mentioning that for separations larger than µ0=1.2 the two holes
have separate apparent horizons and that for separations larger than
µ0=1.8 the two holes have separate event horizons. These facts were
obtained from the full numerical simulations. In our approach we 
always treat the problem as if it had a single horizon.

We see that the energy radiated in a (head-on) black hole collision
is small, less than 0.1% of the mass. One cannot seem to radiate
more by dropping the black holes from farther away. This is due
to the fact that the increased kinetic energy also increases the mass,
so the fraction of the mass radiated remains constant. This is a feature
of these families of initial data, that is also true for boosted and
spinning holes: they all “level out” in the amount of radiation 
produced at values less than 1% of the  total mass.



And if one pushes perturbation theory close to the limit of 
breakdown, but immediately before it, one finds the best place for
second order corrections to help:



The Misner initial data were a real “tour de force” from the point 
of view of calculus, mainly due to the presence of the bispherical
coordinates. It illustrates how the issue of “symmetrizing” the
initial data complicates calculations. Compared to this, studying the
close limit collision of Brill-Lindquist type holes is much simpler.
The conformal factor is (assume black holes at +/- z0 on the z axis),
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And expanding in spherical harmonics we get,
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It is instructive to compare the conformal factors of Misner and
Brill-Lindquist. One sees that the only real difference is that 
instead of the kappa factor one has z/M. That means that for a 
given multipole, the two problems really differ in a single number.

Since the measure of the separation of the black holes is not a 
well defined physical quantity, for close black holes this issue 
becomes really more pressing than the difference in the coefficient
we see in the Brill-Lindquist and Misner cases! One could, by 
definition, identify certain value of µ0 with certain values of z0 in
such a way that the two problems give the same results for 
radiated energies and waveforms. In a sense, this is good, it would
be troublesome that a small difference in the initial data as the
symmetrization would cause significant differences in the final
physical results.



What about black holes boosted towards each other?

Pd
In this case one has a non-vanishing extrinsic
curvature. The extrinsic curvature bears the
same relation with the time derivative of the
Zerilli function as the metric does with the
function itself. 

And since the problem is linear, we can break it up into two 
pieces: in one piece we set the initial time  derivative to zero
and the initial Zerilli function as in the Misner (or Brill-Lindquist
problem) and another piece with non-vanishing time derivative
but vanishing initial data for the Zerilli function.

If we go with the slow approximation we discussed before, the only
thing we need to do different is to include the initial time derivative,
since in this approximation the conformal factor (and therefore the
Zerilli function) are the same as in the Misner (or Brill-Lindquist)
case.



The first problem we already solved. So we solve the second one 
and add up the results. One gets,

Radiation as a function of momentum for initial separation mu0=1.4



This figure merits several comments:

a) There is this “dip” in the radiated energy. As one starts to smash
the black holes harder and harder starting from rest one finds that 
the energy initially diminishes!

b) We were supposed to be looking at a “slow approximation”, yet
the results work well even for very large values of P.

c) One cannot exceed 1% of radiation even for very large values of
P.

What is going on?



The answer lies in the construction of the initial data. As you remember
we used an exact solution for the extrinsic curvature and an 
approximate (slow) solution for the conformal factor.

The extrinsic curvature grows linearly in P. The conformal factor 
grows much more slowly with P due to the nonlinearity of the 
Hamiltonian constraint. 

Therefore as one increases the momentum, the data from the
extrinsic curvature “overtakes” the data of the conformal factor,
and quickly dominates the problem. As the extrinsic curvature
is exact, for large values of the momentum, the initial data is quite
good. Sure, the slow approximation yields a questionable conformal
factor, but this portion of the data is irrelevant for large values of P.

This “overtaking” also leads to the dip, and is called “momentum
dominance”. It is a simple fact that went overlooked.

R. Gleiser, C. Nicasio, R. Price, JP, Phys. Rev. D59, 044024 (1999).



At the “dip” there is a cancellation occurring. Therefore linearized
theory does a bad job in following the evolution, since the higher
order terms that dominated are not taken into account. Second order
perturbation theory does a much better job. 

The dip is linear in the momentum, for black holes boosted away
from each other it is not there.



How much spurious energy in one of these holes?

The Bowen-York construction is such that if one carries it out for a
single boosted hole one does not get a single boosted Schwarzschild
spacetime. One gets spurious gravitational radiation and a black hole
that “rings down” to Schwarzschild. 

Similar comments apply in the case of a single rotating hole. One 
does not get a Kerr hole, but a hole that rings down to Kerr while
emitting gravitational radiation.

As long as the momentum and angular momentum is small, we can
treat these problems as single distorted holes and evaluate the 
resulting radiation.

R. Gleiser, C. Nicasio, R. Price, JP, Phys. Rev. D57:3401-3407,1998 
R. Gleiser, G. Khanna, JP, gr-qc/9905067 



We have treated both situations as perturbations of Schwarzschild.

In the spinning case, the first order perturbations correspond to the
static rotation that makes Kerr different from Schwarzschild, one
needs to go to second order to evaluate the radiation.

In the boosted case, the first order piece corresponds to the boost,
it turns out to be pure gauge, and after removal, one needs to 
evolve the second order pieces.

In both cases one finds that each hole carries more energy than
a total collision for values of the momentum greater than 0.5.

Which is surprising, since we see no such effect in boosted 
collisions, this suggests some miraculous cancellation is 
occurring!



The radiated energy by a single spinning Bowen-York hole. The 
curves show the importance of using the right conformal factor in the
ADM mass calculations.



The conformal factor can be found to high accuracy iterating the
“slow approximation” we discussed.



Inspiralling non-spinning black holes: 
Kerr perturbations?

Not so obviously a better choice than Schwarzschild. In any
family of initial data for the non-head-on collision of 
non-spinning holes, the Kerr spacetime only features with a=0 
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It leads to a weird perturbation theory: one is working to linear
order in a, with an equation where the background metric contains
all orders of a! (Inconsistencies with initial data?)

Easy to get confused...



Moreover, there are practical problems:

• Bowen-York initial data is conformally flat. The Kerr spacetime 
is not known to admit conformally flat spatial slices. It is conformally 
flat to first order in a.

• Little experience with Teukolksy equation in the time domain.
2+1 dimensional problem. Progress has been made by 
Krivan, Laguna and Papadopoulos.  

• Also the setup of initial data  in the Teukolsky formalism had to 
be worked out. Campanelli, Krivan, Lousto, Baker, 
Khanna have done it.

• Radiation of angular momentum: formulas had to be set up in 
the Zerilli and Teukolsky formalims: Gleiser, Khanna, 
Campanelli, Lousto just finished it.



Inspiralling black holes:
(G. Khanna, J. Baker, H.-P.Nollert, P. Laguna, R. Gleiser, R.Price)
                                                                             gr-qc/9905081 

We treated the problem both as a perturbation
of a rotating and a non-rotating black hole.
There are several technical complications.

Perturbing a non-rotating black
hole works better!

The system radiates somewhat
less than 1% of its mass.



The radiated angular momentum  puzzle:

Both curves obtained
with same initial data,
evolved with different
evolution equations.

There even is a dip!

Small quantity, due to
interference in phase 
of different modes.
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Summary:

The close limit approach has been hugely successful, delivering a lot
of physics with very low cost. We cannot do the problems of most
relevance, but we can still learn a lot.

Future steps: collisions of spinning holes, and a better understanding
of Kerr perturbation theory.

A lesson to be followed throughout the binary black hole problem:
we need more and novel approximation techniques to compare with
numerical results. This is the way physics has always been done,
especially with such a big problem.


