o Setting up theinitial data and evolving: the
Misner example.

o Other families of data: Brill-Lindquist,
Bowen-Y ork, Baker-Puzio-Krivan-Price.

e Results of evolutions.



We need to provide initial datato the Einstein eguations. By this
we mean athree dimensional metric on athree surface and its
time derivative.

Theinitial value problem in general relativity is not free. For

people unfamiliar with this, it is good to examine as an example

the case of Maxwell fields. Suppose one wishesto evolve in time

an electromagnetic field. Asinitial data one could set up the

electric and magnetic fields and their time derivatives. Unfortunately
not any vector field will work asinitial data. In vacuum the electric
field hasto satisfy div E=0 at any time, in particular at the initial
time. Therefore the initial data has to satisfy this (linear) eguation.

In general relativity the corresponding equations are “ G0OO” and
“G01”. These equations only involve the metric and itsfirst time
derivatives and therefore constrain the initial data.



Theinitial value problem for general relativity isnon-linear. This

IS physically understandable. One cannot superpose two non-trivial
solutions of general relativity without taking into account “the mutual
attraction”. Thisis ubiquitous in the two black hole problem.

What one does normally do for binary situations, like two black holes
that will collide? The typical attitude has been to cast the equations

In such away that the equations that govern some of the variables

are linear. One then obtains a solution for those equations ssimply
superposing known solutions for individual black holes. One then
proceeds to solve the remaining equations in full non-linearity.

It is clear that this procedure may yield appropriate initial data only
In certain circumstances. Since one does not have control on the
non-linear equations one solves, one in the end is left with “whatever
Initial data the method provides’! There will never be away out of
thigl



The resulting solutions usually resemble two black holes, but there
usually Is added spurious gravitational radiation. The amount of
spurious radiation is “what we need to add in order for some of the
variables of the problem to ssimply superpose linearly”. It is artificial.

For most solutions the amount of spurious radiation introduced
decreases if the black holes are far away (the farther the black holes
the more natural isto linearly superpose variables).

So in principle a strategy would be to set up initial data with the black
holes far away, evolve them for awhile allowing the system to

“flush itself” of spurious radiation, and then one ends up with two
black holes plunging into a collision under more or lessrealistic
circumstances.

The main problem with this strategy isthat it is very costly (currently
It is actually impossible) to evolve binary black holes long enough
to “flush out the radiation”.



In spite of these drawbacks, we will discuss here one of the most
popular methods of constructing binary black hole families of
Initial data, the conformally flat solutions due to Y ork, Bowen,

Misner and other collaborators.

J. York in “Sources of gravitational radiation”, L. Smarr, ed, Cambridge 1979
J. Bowen, J. York, Phys. Rev. D21, 2047 (1980)

C. Misner, Phys. Rev. 118, 1110 (1960).

D. Brill, R. Lindquist, Phys. Rev. 131, 471 (1963).



Initial data: the conformal approach

We start by considering the usual decomposition of space-time into
3+1 dimensional space and time. The space-time metric is written
as,
ds? =- (N%- N@N,)dt? + 2N, dx?dt + g.,dx2dx”
Where N is the lapse, N2 is the snift vector and g, isathree
dimensional spatial (positive-definite) metric.
na

Bt =Nn®+N?

The extrinsic curvature is defined as
(1] | | J— 1 e 1
Kab = Yap = - 5 LnOab _m(gab + Na’b+Nb’a)
and plays therole of “time derivative’ of the metric, wherenisa
vector normal to the foliations.



The“G,," and “Gy” components of the Einstein equations, solely
depend on the spatial metric and extrinsic curvature,

N, (K®- g®K)=0
*R- KpK®+K?=0

Thefirst set of three equations is usually called the “vector constraint”
or “momentum constraint”. The last equation isthe
*(super)Hamiltonian constraint” or “scalar constraint”. K isthe trace

of the extrinsic curvature and 3R is the Ricci curvature of the three
metric.

These equations are non-linear, elliptic (no time derivatives)

and they hold at every spatial slice. They constrain the initial data
of general relativity, which is given by the three metric and the
extrinsic curvature, which still carries a certain amount of freedom.



We will not engage in afull discussion of these equations here but
jump immediately to atechnique for solving them.

The technique (or if you wish a series of choices) consistsin
assuming that the spatial metric is conformally flat and the trace
of the extrinsic curvature vanishes,

Oab =f 4dab’ K=0

also setting, K., = Kabf 2
We get for the constraints, KK, =0,
¢ pab
Ko = TRaf
8 ff

Where the hats denote flat space operators (gradients and Laplacian).



K

We are therefore left with a set of flat space equations to solve.
Thefirst set of equationsislinear, therefore it is reasonably easy
to solve and we can superpose solutions. (J. York, IMP14,456 (1973))

Y ork has found solutions for these equations that have ADM
momentum and angular momentum at spatial infinity.

4
C c,..d c..d

2 )
Where P and S are the (three)-momentum and angular momentum
of the space-time, and nisaunit normal pointing out from the
origin.

In terms of these variables, the ADM momentum and angular

momentum of the space-time at spatial infinity are given by,

1 . b
Pa :gg KabdZS y

s, :a]:-)eabC@(XbKCd _ xCKbd)dZSd



One can now superpose two of these solutions and solve the Hamiltonian
constraint to find initial datathat correspond to two black holes.

But how do we know these solutions have anything to do with

black holes? Actually, solutions with one hole of this sort were

studied by Y ork and Cook and indeed they found apparent horizons.

So the space-time has momentum P and an apparent horizon.

L ater studies have treated these space-times as a perturbation of a

single hole and found that they indeed correspond to a black hole

with additional radiation (small for small values of the momentum).
R. Gleiser, C. Nicasio, R. Price, JP, PRD57, 3401 (1998).

In fact, we do not even have the complete initial data, we have not
tackled the Hamiltonian constraint. This equation can be tackled
either numerically or approximately. Before doing that we need to
discuss the issue of boundary conditions.



For asingle hole the spatial surface we are trying to construct is

OK outside the hole. What about inside the horizon? Well, we do not
even know where the horizon is unless we evolve the space-time.
Therefore, in which domain should we integrate these elliptic equations?
Again, we face achoice.

One of the choicesisto make the spatial surface look like a

throat connecting two asymptotically flat universes. In such case

one chooses to make the whole spatial slice symmetric under
Inversion. The ideais that one asymptotically flat universe will
represent the exterior of the black hole and the other one the

Interior. This corresponds to the traditional picture of the “wormhole”.

In practice it means that one pick aradius a, and requires that the
solution be symmetric under inversion through the sphere at radius

a. When one has more than one throat, one has to require that inversion
through all throats be implemented. This can be done by the method

of images, but it might take summing an infinite summation.

Thiswas studied in great detail by G. Cook and others, Phys.Rev.D47:1471,(1993)



Thisinversion type of solution led to the first binary black hole
solution to the initial value problem, found by Misner. He
considered “momentarily stationary” black holes at a given
separation. That meant K_=0. The Hamiltonian constraint then
ssimmply becomes, 8% =0

And one wishes to find solutions which respect the inversion
symmetry through two throats. Misner accomplished this by
considering the solution of the Laplace equation in bi-spherical
coordinates. He starts from an ordinary, flat “donut” (torus),

dsp? =dn? +(dg? +sin?qdf 2) - p <m<p

And noticesthat if one could “break up” the donut at p=0 and identify
the points of the breakup one would end up with a wormhole.



To achieve this, Misner notices that the metric of flat spacein

bi-spherical coordinates looks like a conformal factor times a
donut,

dse % = (coshm- cosq) “dsp?

And since flat space obviously solves the Hamiltonian constraint,
If one could make the above solution periodic in p, one would have

the desired result. This can be achieved by superposition (method
of Images),
v -1/2
f = g [cosh(m+2nmy) - cosq]
n=- ¥

This solution is periodic with period 2m, This parameter governs
the ratio of radius to separation of the holes. For afixed radius it
measures the separation of the holes.



If one compares with the asymptotic (n¥+g?)->infinity form of the
Schwarzschild metric in bispherical coordinates,

£ /2‘é 4 u
dss® = Sl+mimy® +q 2| (dsp*
SS gl‘ (rTb g )1 ‘m2+ng D
Onefinds that the Misner initial data has an ADM mass of,
M =48 ", (sinhnmy)

And the separation of the throats can be found by computing the
Integral along the throat of the shortest closed |oop through the

wormhole y

L= ¢ *(mg =p)dm
- ¥
Thisintegral can indeed be evaluated in closed form! Its expression

Isgiven interms of elliptical integrals (see Misner) and is afunction
of m,.



Brill and Lindquist considered the solution of the same problem as

Misner, but without requiring symmetry through the throats. Their
solution for the conformal factor is remarkably ssimple,

_ M1/2+M2/2
r-r r-rn
It is essentially given by the Newtonian potential of each hole!

f

What can one do for solutions with momentum? One can generalize
both the Misner and Brill-Lindquist solutions. Cook found the
generalization of the Misner solutions and Brandt and Bruegman the
Brill-Lindquist generalization to the case of momentum.

An interesting aspect isthat for “slowly moving” holes one can find
an approximate solution. Since the extrinsic curvature islinear in the
momentum of the holes (aither linear or angular), if the black holes
are slowly moving, the value of K_, will be small.



Therefore the right hand side of the Hamiltonian constraint will

be small too, and at a zeroth level of approximation one can ignore
It. What we are saying isthat if one takes a conformal factor that
solves the Hamiltonian constraint with zero momentum, and takes
the extrinsic curvature of Bowen-Y ork, one has an approximate
solution of the initial value problem. This procedure can be
iterated, now solving for the order P2 correction to the conformal
factor, and so on.

Since in perturbation theory one is interested in approximate
solutions, It turns out that using approximate initial datais
good enough for the situations of interest.

Thereis one caveat: if one wishes to compute the ADM mass
of the spacetime, it is given by the integral,

1\” 2ca
M=—" f d<S
p O



Because the ADM mass depends solely on the conformal factor,
and thisin turn satisfies a highly non-linear eguation, the ADM
mass is poorly approximated by polynomial approximations.
(For instance, the zeroth order solution we considered had no
contribution to the ADM mass due to the momentum).

Ignoring this last point, the approximate solutions really work very
well. Because the extrinsic curvature is linear in the momentum,

It grows very rapidly when one increases the momentum of the
collision. The conformal factor, due to the nonlinearity of the
Hamiltonian, remains bounded. Therefore, as soon as the momentum
grows, the extrinsic curvature (for which we have an exact solution!)
completely dominates the initial datal

J. Baker et. al. PRD55, 829 (1997)



We are now ready to consider the evolution of the initial datawe
have discussed using the “close limit”. That is, we assume we are
considering black holes that are close to each other and therefore

the situation should not differ too much from a single, distorted
black hole.

For historical reasons, we will consider the Misner case (symmetrized
time-symmetric initial data). Here the extrinsic curvature is zero and
the metric,

ds’Misner = a%f 4[dn? +dh? +sin?hdj ?]

Where ais a constant, mh are bispherical coordinates and f isthe
conformal factor we discussed before.



The bispherical coordinates are related to ordinary polar coordinates
by,

__ |coshm+cosh
R=a
cosh m- cosh

q :tan_l sinh
sinhm

g=const
m= const

m=-m, m= -+




So we can trand ate the Misner geometry into more familiar polar
coordinates:

ds?misner = F *(R,q, my)|dR? + R?|dg 2 +sinq dj 2|}
with the new conformal factor F given by,

o \Jcoshm- cosh

1+ a

o o\/28| nh? nmy, +sinh msinh 2nmy, + (coshm- 1) cosh 2nny, +1- cosh

Which can be rewritten as,

F=1+2§ 1
0 8:eL+aZ(.j h2nm, + < h?2 S
g R2:S'n nny, cosqsm LR
%]

And if you were college students taking an electricity and magnetism
class, you would quickly recognize this as the generating function of
the Legendre polynomials (!).



Which therefore allows us to write the conformal factor as,

L+1

F=12 § kLS P (cosm)

?1=0,2,4

And the only dependence on the separation myis given in the
coefficient kappa,

_ 1 ¢ (cothnm)’
(M) = ¥ L1~ ginhn
% s 1 0 na M
= Sinhnny,

If one now evaluates explicitly the I=0 contribution to the sum, one
can rewrite the conformal factor as,

s MG
2Rg



With the function F given by,

F —l+2§i+— o gg—+ P, (cosq )
= 24

We now notice that we have the three metric written as a conformal
factor that to leading order looks the same as the form of the
conformal factor of the Schwarzschild metric in isotropic coordinates!

? , &
ZRﬂ dt +?+M9 (dR2 R°dq + R*sin’q d )
M 2Rg
+*9
2Rg

It istherefore natural to identify the coordinate R with the isotropic
radius of Schwarzschild,

:%(ﬁ+m)2



And we can therefore finally (!) make contact with the usual
Schwarzschild coordinates. Our spatial metric reads,

e,

ds? =F (r,q)*¢- I +r2dq? +r2sin?q dj 2+
2M -

¢1- '

e T 2

But how isthis metric a“perturbation” of Schwarzschild? In order

to see this we need to study the dependence on my, which characterized
the separation of the holes. Since all the dependence came through the
kappa coefficients, we just need to know that (this takes a small

effort to prove, see Anninoset al. PRD52, 4462 (1995)),

2
k, » z(£+1) L P formy® O

, D
|4Inmy |+ M |4Inmy|




So we could go back now to our notes on the Regge-Wheeler
notation and, starting with this metric, we could read off the
various coefficients of the perturbation. Fortunately for us, the
higher order multipoles are heavily suppressed given the explicit
form of kappa. Thisisreally ablessing, since the conformal factor
IS raised to the fourth power. If suppression did not happen, one
would obtain contributions for I=2 coming from products of all
the higher order ell’s, yielding the problem intractable in practice!
The suppression allows usto only consider the termslinear in
kappa for any given ell, even if we wish to consider higher order
ells (See Anninos et al)

These terms turn out to be all even parity, so reading off the
Regge-Whedler coefficients,

Wy o (M /R)"™*
H,=K=8|_" k
2 20 +72 g(m’)1+|\/|/2R




And go ahead and compute the Zerilli function,

Y ("
(0+2)(0-D)+6M/r

Wy ek
2M /'t ¢H

gq=2r(1- 2M /r)g_K— JVi- 2M /ré?l

And we are ready to evolve! Notice that all the dependence on the
separation of the holes comes linearly as a prefactor of kappa.
Therefore one can pull this factor out, make one evolution and
rescale the results to obtain the evolution for al values of the
separation! The computational economy is astonishing.



If one proceeds along these lines these are the results one gets:
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If one computes the radiated energy as afunction of the separation

one gets.
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To give an idea of the physics involved (since both measures of the
separation are quite artificial when the holes are close), it isworthwhile
mentioning that for separations larger than my=1.2 the two holes

have separate apparent horizons and that for separations larger than
m=1.8 the two holes have separate event horizons. These facts were
obtained from the full numerical ssimulations. In our approach we
always treat the problem asif it had a single horizon.

We see that the energy radiated in a (head-on) black hole collision
Issmall, less than 0.1% of the mass. One cannot seem to radiate

more by dropping the black holes from farther away. Thisis due

to the fact that the increased kinetic energy also increases the mass,
so the fraction of the mass radiated remains constant. Thisis afeature
of these families of initial data, that is also true for boosted and
spinning holes: they al “level out” in the amount of radiation
produced at values less than 1% of the total mass.



And if one pushes perturbation theory close to the limit of

breakdown, but immediately before it, one finds the best place for
second order corrections to help:
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The Misner initial datawere areal “tour de force” from the point

of view of calculus, mainly due to the presence of the bispherical
coordinates. It illustrates how the issue of “symmetrizing” the
Initial data complicates calculations. Compared to this, studying the
close limit collision of Brill-Lindquist type holes is much smpler.
The conformal factor is (assume black holes at +/- z, on the z axis),

1ae m m 0
ZgJstm q +(Rcosq - z)? Jstin2q+(Rcosq+zO)ZE

And expanding in spherical harmonics we get,

Y =1+

M/2R o 597_00@%0

a
1+ M 24,...8M &R D
2R

Y =1+



It isinstructive to compare the conformal factors of Misner and
Brill-Lindquist. One sees that the only real differenceisthat
Instead of the kappa factor one has zZ/M. That means that for a
given multipole, the two problems really differ in a single number.

Since the measure of the separation of the black holesisnot a

well defined physical quantity, for close black holes thisissue
becomes really more pressing than the difference in the coefficient
we see in the Brill-Lindquist and Misner cases! One could, by
definition, identify certain value of my with certain values of z; in
such away that the two problems give the same results for
radiated energies and waveforms. In a sense, thisis good, it would
be troublesome that a small difference in the initial data as the
symmetrization would cause significant differences in the final
physical results.



What about black holes boosted towards each other?

Q—> 4—@ In this case one has a non-vanishing extrinsic
d P curvature. The extrinsic curvature bears the

same relation with the time derivative of the
Zerxilli function as the metric does with the
function itself.

If we go with the slow approximation we discussed before, the only
thing we need to do different isto include the initial time derivative,
since in this approximation the conformal factor (and therefore the
Zexilli function) are the same asin the Misner (or Brill-Lindquist)
case.

And since the problem is linear, we can break it up into two
pieces. in one piece we set the initial time derivative to zero

and the initial Zerilli function asin the Misner (or Brill-Lindquist
problem) and another piece with non-vanishing time derivative
but vanishing initial datafor the Zerilli function.




Thefirst problem we already solved. So we solve the second one
and add up the results. One gets,
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Thisfigure merits several comments:

a) Thereisthis“dip” inthe radiated energy. As one starts to smash
the black holes harder and harder starting from rest one finds that
the energy initially diminishes!

b) We were supposed to be looking at a*slow approximation”, yet
the results work well even for very large values of P.

c) One cannot exceed 1% of radiation even for very large values of
P.

What is going on?



The answer liesin the construction of the initial data. As you remember
we used an exact solution for the extrinsic curvature and an
approximate (slow) solution for the conformal factor.

The extrinsic curvature grows linearly in P. The conformal factor
grows much more slowly with P due to the nonlinearity of the
Hamiltonian constraint.

Therefore as one increases the momentum, the data from the
extrinsic curvature “overtakes’ the data of the conformal factor,

and quickly dominates the problem. Asthe extrinsic curvature

IS exact, for large values of the momentum, the initial datais quite
good. Sure, the slow approximation yields a questionable conformal
factor, but this portion of the datais irrelevant for large values of P.

This“overtaking” aso leadsto the dip, and is called “momentum
dominance’. It iIsasimple fact that went overlooked.

R. Gleiser, C. Nicasio, R. Price, JP, Phys. Rev. D59, 044024 (1999).



At the“dip” there is a cancellation occurring. Therefore linearized
theory does abad job in following the evolution, since the higher
order terms that dominated are not taken into account. Second order
perturbation theory does a much better job.

Thedipislinear in the momentum, for black holes boosted away

from each other it is not there.
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How much spurious energy in one of these holes?

The Bowen-Y ork construction is such that if one carriesit out for a
single boosted hole one does not get a single boosted Schwarzschild
spacetime. One gets spurious gravitational radiation and a black hole
that “rings down” to Schwarzschild.

Similar comments apply in the case of asingle rotating hole. One
does not get a Kerr hole, but a hole that rings down to Kerr while
emitting gravitational radiation.

As long as the momentum and angular momentum is small, we can
treat these problems as single distorted holes and evaluate the
resulting radiation.

R. Gleiser, C. Nicasio, R. Price, JP, Phys. Rev. D57:3401-3407,1998
R. Gleiser, G. Khanna, JP, gr-qc/9905067



We have treated both situations as perturbations of Schwarzschild.

In the spinning case, the first order perturbations correspond to the
static rotation that makes Kerr different from Schwarzschild, one
needs to go to second order to evaluate the radiation.

In the boosted case, the first order piece corresponds to the boost,
It turns out to be pure gauge, and after removal, one needsto
evolve the second order pieces.

In both cases one finds that each hole carries more energy than
atotal collision for values of the momentum greater than 0.5.

Which is surprising, since we see no such effect in boosted
collisions, this suggests some miraculous cancellation is
occurring!



The radiated energy by a single spinning Bowen-Y ork hole. The
curves show the importance of using the right conformal factor in the
ADM mass calculations.
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The conformal factor can be found to high accuracy iterating the
*dow approximation” we discussed.
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| nspiralling non-spinning black holes:
Kerr perturbations?
Not so obviously a better choice than Schwarzschild. In any

family of initial datafor the non-head-on collision of
non-spinning holes, the Kerr spacetime only features with a=0

P
‘_> a=P d/M?
d
)

P

It leads to a weird perturbation theory: one isworking to linear
order in a, with an eguation where the background metric contains

all orders of a (Inconsistencies with initial data?)

Easy to get confused...



Moreover, thereare practical problems:

 Bowen-York initial datais conformally flat. The Kerr spacetime
IS not known to admit conformally flat spatial dices. It isconformally
flat to first order in a.

o Little experience with Teukolksy equation in the time domain.
2+1 dimensional problem. Progress has been made by
Krivan, Laguna and Papadopoul os.

 Also the setup of initial data in the Teukolsky formalism had to
be worked out. Campanelli, Krivan, Lousto, Baker,
Khanna have done it.

 Radiation of angular momentum: formulas had to be set up in
the Zerilli and Teukolsky formalims: Gleiser, Khanna,
Campanélli, Lousto just finished it.



Ilnspiralling black holes:
(G. Khanna, J. Baker, H.-P.Nollert, P. Laguna, R. Gleiser, R.Price)
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Perturbing a non-rotating black
hole works better!

The system radiates somewhat
less than 1% of i1ts mass.
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We treated the problem both as a perturbation
of arotating and a non-rotating black hole.
There are several technical complications.
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Theradiated angular momentum puzzle:
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The close limit approach has been hugely successful, delivering alot
of physics with very low cost. We cannot do the problems of most
relevance, but we can still learn alot.

Future steps: collisions of spinning holes, and a better understanding
of Kerr perturbation theory.

A lesson to be followed throughout the binary black hole problem:
we need more and novel approximation techniques to compare with
numerical results. Thisisthe way physics has always been done,
especially with such abig problem.



