
Colliding black holes using perturbation theory

Jorge Pullin, Center for Gravitational Physics and Geometry, PennState

1. First lecture: black hole perturbation theory.

2. Black hole collisions: initial data and test cases.

3. Boosted black holes and inspiralling collisions.



Motivation: the final stages of black hole collisions are well 
approximated by a single distorted black hole that “rings down”
into equilibrium.



Plan of first lecture:

• Perturbation theory, gauges.

• The Zerilli and Regge-Wheeler equations.

• The integration of these equations.

• Perturbations of rotating black holes.



Plan for today: to describe the framework for doing black hole
perturbation theory. We will start with perturbations of 
Schwarzschild black holes and then consider the Kerr case.

There are many frameworks for doing perturbation theory, I will
refer to the two most popular ones: the first one is based on 
direct examination of the Einstein equations and leads to the  so
called Zerilli-Regge-Wheeler equations. The second formalism is
based on the Newman-Penrose formulation of GR and leads to the
Teukolsky equation (for rotating holes) or the Bardeen-Press 
equation for the non-rotating case. 

Both frameworks have pros and cons. The ZRW quantities are
first order in the time derivatives of the metric. The Teukolsky
function is second order. The latter however, has a better physical
motivation: it is a component of the Weyl spinor in a given null
tetrad; moreover it can be generalized to rotating holes.



Perturbations, the idea:

Give yourselves a one-parameter family of metrics, that are
“nearby” a given exact metric   g(0) 

...g )2(2)1()0( +++= µνµνµνµν εε ggg

Substitute in the Einstein equations 0=µνR

And keep terms order by order in epsilon.

Generically, this sounds pretty much like the way one proceeds
any time one studies a problem in perturbation theory in physics.

However, in general relativity there is an added complication:
the issue of gauge. That is, how do I know that I am perturbing
“the geometry” as opposed to “the metric” (that is, making just
a coordinate transformation)?



The issue of gauge:

If one is to confuse coordinate transformations with small perturbations
the coordinate transformations must be “small”, µµµ ξε+= xx'

It is well known (exercise) that up to first order, an infinitesimal
coordinate transformation translates itself, acting on a tensor, 
into a Lie derivative,
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For higher orders in epsilon, the situation is less geometrical and more
involved, see Bruni et. al. CQG 14, 2585 (1997); gr-qc/9609040.
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Gauge invariance:

To deal with this issue there are two approaches:

a) Construct gauge invariant quantities.

b) Worked in a fixed gauge.

Remarkably under-appreciated is the fact that these two approaches
are essentially the same. 

As long as one works in a (uniquely fixed) gauge, the quantities
one is dealing with are gauge invariant, in the sense that one can
translate them into any gauge one wants.

This is kind of obvious, but somehow it leads to interminable
arguments...

Moncrief, Ann. Phys. 88, 323 (1974)



The Regge-Wheeler notation and the Regge-Wheeler gauge:

(T. Regge, J.A. Wheeler, Phys. Rev. 108, 1063 (1957))

We are interested in considering perturbations in which the 
background spacetime is the Schwarzschild metric. It therefore makes
sense to expand the perturbations in spherical (tensor) harmonics.

Under rotations in the theta-phi sphere, htt , htr , hrr behave like 
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We can then proceed to decompose. For the scalars it is as usual,
they are characterized by “quantum numbers” L, m, and are given
by a function of  (r,t) times a spherical harmonic YLM. The parity
of these objects is (-)L.



There are two kinds of vectors, of different parity. One kind is 
simply given by the gradient of a YLM  and has parity (-)L. 
The other is the “dual vector” (contraction with the Levi-Civita
symbol in two dimensions, and has parity (-)L+1 (it’s a pseudo-vector).

Finally, there are three kinds of tensors. One is given by the double
covariant gradient of YLM and has parity (-)L. Another is a constant 
times the metric of the sphere, also with parity (-)L. The last is 
obtained by “dualizing” the first tensor with the Levi-Civita 
symbol in each index; it has parity (-)L+1.

We can therefore group perturbations into two separate groups,
depending on their parity behavior with respect to the sphere:
even (-)L and odd (-)L+1 parity perturbations.



The corresponding metric tensors are:
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The Regge-Wheeler gauge:

Perform a gauge transformation that eliminates the second angular
derivatives. The final form of the metrics are,
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Consider the equation we introduced for the gauge transformations,
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And assume for g and g’ that they have the Regge-Wheeler “form”.
And also assume that g’ is in the Regge-Wheeler gauge.

For instance, for even waves, assume h0, h1, H1 and G are zero.

And also assume an appropriate angular decomposition for the 
gauge transformation vector,
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Then, remarkably, the quantities M0, M1, M2 are completely
determined by the following equations   (Gleiser 1996),

And the components of the metric in the Regge-Wheeler gauge
can be written in terms of the components of a metric in any gauge as,

Notation: A=M



Details can be found in R. Gleiser, C. Nicasio, R. Price, JP gr-qc/9807077

Why does this happen? Because the Regge-Wheeler gauge is 
unique. 

Therefore any quantity computed in such a gauge is in itself a 
gauge invariant. Explicit proof of this are the formulas we just
introduced: they represent the value of the computed quantity in
terms of the metric in any gauge!

The reason for this long detour is that in the following I will use
calculations in the Regge-Wheeler gauge. Some people might have
the impression that these calculations are only useful in a particular
gauge and are lacking in generality. THEY ARE NOT! Any 
result we compute can be expressed straightforwardly in a 
“manifestly gauge invariant” manner by substituting the 
Regge-Wheeler gauge quantities in terms of a general gauge using
the formulas we just introduced.



The field equations:

I illustrate here with the odd parity case, which is simpler. This
was worked out by Regge and Wheeler in the reference cited. The
more important (and involved) even parity case was worked out 
later by F. Zerilli (Phys. Rev. Lett 24, 737 (1970)).

One now proceeds to insert the metrics we just considered into
the usual Einstein equations, and we keep only terms linear in epsilon,
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Where we have assumed that the perturbations are harmonic in 
time with frequency omega. All other Einstein equations vanish. 
Moreover, the latter is a combination of the first two. 



If we now eliminate h0 between the two first equations, and defining,
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Which is known as the Regge-Wheeler equation and describes
odd parity perturbations of a Schwarzschild black hole.
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The even parity equation has generically the same form,

But the “potential” is different. It is known as the Zerilli equation.
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In terms of the Regge-Wheeler gauge perturbation quantities.



The Zerilli and the Regge-Wheeler equations each describe one of 
the two degrees of freedom of linearized gravity propagating in a 
black hole background. With minor modifications they also describe
electromagnetic and scalar fields.

Notice that the equations are wave equations in Cartesian 1+1 
dimensional spacetime (in spite of the fact that we are in spherical
symmetry), and that they are written in terms of the “tortoise”
coordinate r*. 

The derivations we followed were in the Regge-Wheeler gauge,
but by now we know that the quantities of interest, ψ, are gauge
invariant quantities that can be expressed in terms of the metric
perturbations in any gauge. 

It is worthwhile mentioning that approaches that are “manifestly
gauge invariant” to these equations can be constructed. Moncrief
for instance, has a beautiful construction from the Hamiltonian 
formulation V. Moncrief, Ann. Phys. 88, 323 (1974)



The tortoise coordinate:
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Arises from absorbing a (1-2M/r) factor, 
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The potential:
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The potential is an analog
of the usual centrifugal
plus Newton plus GR
corrections potential 
of the two body problem.

The peak corresponds to
the barrier that normally
determines the ISCO
(innermost stable 
circular orbit) in the 
general relativistic 
two body problem.



The physical meaning of the Zerilli function:

We manipulated the Einstein equations to obtain a second order
wave equation for a  certain quantity. Why not choose another
quantity? You can do it, but the one we chose has interesting 
properties. To see this we will go to a region where things are
under control, far away from the hole. There it is customary to 
describe things in the radiation gauge (MTW),
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And therefore,
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So the Zerilli function really captures the “essence” of gravitational
radiation!

With this setup, it is straightforward to work out formulas for 
radiated energy and angular momentum, using the Landau-Lifshitz
pseudo-tensor,
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Exercise: the time domain code:



Solving the Zerilli equation: what is going on mathematically?

In the numerical experiments we saw that perturbations of a black hole 
of finite duration in time generate, in addition to an initial
transient, a characteristic ring-down followed by a power-law tail.
Let us try to understand better analytically how these behaviors
come about.

Consider the Green’s function solution to the Zerilli equation,

∫ += )0,(),,()0,(),,([),( ytyxGytyxGdytx φφφ &&

Where G(x,y,t) is the Green’s function for the time-domain Zerilli
equation. It can be obtain via Fourier transform from the frequency
domain Green’s function, which is easier to obtain,
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E. Ching, P. Leung, W.-M. Suen, K. Young Phys. Rev. D52, 2118 (1995) and references therein.



One way of obtaining the frequency-domain Green’s function is by
constructing two independent solutions f(ω,x) and g(ω,x) to the 
homogeneous equation,  one of them satisfying the left boundary
condition, the other one the right boundary condition, 
multiplying and dividing by the Wronskian,
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To construct the time-domain Green’s function we use the inverse
Fourier transform, which for t>0 requires following a contour
encircling the lower half of the complex ω plane. Examining the
singularity structure of the Green’s function in that domain we 
can see:



a) The Green’s function will have poles wherever the Wronskian 
vanishes. At these points, f and g are linearly dependent, meaning
that one is finding a solution that satisfies outgoing boundary 
conditions at both the horizon and at infinity. Such solutions are
the quasinormal modes of the system and have a complex frequency
with negative imaginary part.

b) If the potential is of compact support in x, one can impose the
outgoing boundary condition immediately outside the domain of
the potential. One can then integrate the differential equation for
a finite amount of x range to obtain f,g. Therefore these f,g’s cannot
have singularities. This is also true if the potential decays fast with x.
If the potential has a slower than exponential tail, f and g will have
singularities in the complex plane. These singularities have the 
form of a branch cut along the negative imaginary ω axis. When
these singularities reach ω=0, they produce the power-law tails.



C) Finally, the “prompt” contribution comes from the circle at 
|ω|=infinity.

Solving the Zerilli equation: what is going on physically?

In curved space-times Huyghen’s principle does not apply:
waves do not propagate freely but scatter. 

The ringdown can be viewed as waves bouncing around the 
potential well of the Zerilli potential. Their frequency is therefore
determined by the light travel time across the potential, which 
is proportional to the mass of the black hole.

The tails can be viewed as “accumulation” of waves produced by the
back-scattering on the curved spacetime.

Notice that these phenomena happen also for stars. (W-modes in 
neutron stars). 



Second order perturbation theory:

One can repeat all the manipulations we performed keeping
quantities up to second order in epsilon.

What about the gauge issues? One can proceed in the same way,
based on the following: consider a gauge transformation purely
of first order in epsilon. Let us choose it in such a way that the
second order quantities are brought into the Regge-Wheeler 
gauge to first order in epsilon. This can obviously be done, since
the second order pieces play no role and we repeat the same 
calculations as before.

The first order gauge transformation will introduce changes in 
the quantities at second order. 



We can now perform a gauge transformation that is purely
of order epsilon^2 in such a way that the second order pieces
of the metric are transformed into the Regge-Wheeler gauge.
Such a transformation does not affect the first order pieces.
Therefore the metric to first and second order is put, via
unique formulas, into the Regge-Wheeler gauge.

So we go through the same manipulations as before and end
up with an equation that looks exactly like the first order Zerilli
equation, but that also contains pieces quadratic in the first 
order perturbations. 

There is more ambiguity in what to call “the second order 
Zerilli function”. It has a rather unambiguous piece, which depends
on the second order metric perturbations exactly in the first way that
the first order Zerilli function does on the first order metric perturbations.



But the “second order Zerilli function” has also pieces quadratic 
in the first order perturbation, that we can choose as we wish.

The bottomline in what is useful is to make the choices in such a 
way that the physical quantities of interest have a simple and well
defined dependence on the chosen Zerilli function.

For instance, a carelessly chosen Zerilli function might diverge for
large values of r. This actually happened in the first attempts to 
finding such a function. Of course, the physical quantities do not 
diverge, so it just reflects a poor choice of function to work with.

The details of all this are just too long to summarize here. Let it
be said that a second order Zerilli formalism, including the relations
to the asymptotic energies has been worked out for the L=2 m=0
perturbations. R. Gleiser, C. Nicasio, R. Price, JP, gr-qc/9807077

G. Davies, gr-qc/9810056



Detail: in the even parity case, when one manipulates the Einstein
equations to reach the Zerilli equation, one differentiates and then
integrates the equations with respect to t. This is a curious procedure,
since in principle it implies that one could add an arbitrary function
of r to the Zerilli function. This is true, one simply ignores this freedom.

In the second order case, after differentiating the Einstein equations,
one cannot simply integrate back with respect to time because that 
would mean integrating the pieces quadratic in the first order 
perturbation. This is a priori feasible, but not in closed form.

One therefore settles by considering a Zerilli equation with third
order derivatives, and operating with it. Since by iteration of the
Einstein equations at the initial slice one can obtain arbitrarily high
time derivatives of the metric, one can in practice evolve.



Perturbations of rotating black holes:

Due to the complexity of the Kerr metric, it becomes impractical
to proceed simple-mindedly to massage the Einstein equations to 
get a perturbative equation. This forces us to think harder about what
one is doing. Couldn’t one find a general rewriting of the Einstein
equations such that in the case of small perturbations around a 
spacetime the perturbations immediately become controlled by wave
equations?

In fact, a driving force behind the development of current hyperbolic
formulations of the Einstein equations for numerical relativity is to
achieve such a goal. 
For instance, see Anderson, Abrahams, Lea, Phys.Rev.D58:064015,1998 

To obtain the perturbation equation for rotating black holes,
Teukolsky used the Newman-Penrose formalism.



The Newman-Penrose formalism is a notation to write various 
quantities and equations that appear in relativity. It starts by 
considering a (complex) null tetrad                       such that,),,,( mmnl
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One can write the Bianchi identities and the Einstein equations using
these and related quantities. 
Three of the Bianchi identities, if one substitutes the vacuum
Einstein equations in them, read,
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Consider now a spacetime given by the Kerr metric plus a 
small perturbation. One can easily find null vectors that form
a Newman-Penrose tetrad. One also can see that for a Kerr 
spacetime,
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And one can  combine the above equations into a single
equation for Ψ0  (or Ψ4; actually, both can be shown to be
equivalent, since Ψ0  becomes Ψ4 under the interchange of the
vectors l and n). 

Since these Ψ’s are scalars, and vanish for the background under
an infinitesimal coordinate transformation they are invariant.

background' Ψ∂−Ψ=Ψ µ
µξ

And a similar reasoning leads to the proof that they are invariant
under infinitesimal tetrad rotations.



The scalars have remarkably simple connections with physically
important quantities. For instance, if one considers outgoing 
linearized waves of a single frequency, it is reasonably 
straightforward to notice that,
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And using the pseudotensor formulas we introduced before, one
gets,
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Details: NP formalism: Chandra’s article in “General relativity,
an Einstein centenary survey” by Hawking and Israel, Cambridge.
S. Teukolsky, Ap. J. 185, 635 (1973).



What does the Teukolsky equation look like in practice?

The Kerr metric in Boyer-Lindquist coordinates,
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It should be noted that this metric is quite more involved than the
Schwarzschild metric: it is non-diagonal, rational coefficients with
non-trivial dependence on theta, etc.
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And the Teukolsky equation:

Where if 
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This equation is considerably more involved to handle than the
Zerilli equation. To begin with, it is not separable in angles in the
time domain. In the frequency domain it is separable. That is, if
you assume,  

),(),( ωωθφω rRSee imti−=Ψ

Then the S’s become the spheroidal functions SLM(-a2 ω, cosθ).

In other words, if you wish to evolve things in time, you will need
a 2+1-dimensional code. This was only recently achieved
(W. Krivan, P. Laguna, P. Papadopoulos, Phys. Rev. D54, 4728;D56, 3395 (1997))

When a=0 one does not recover the Zerilli equation. The resulting
equation is the Bardeen-Press equation and it contains in its real
and imaginary parts the Zerilli and the Regge-Wheeler equation
(both parities are handled at the same time).

See Chandra “The mathematical theory of black holes”, Oxford.


