Colliding black holes using perturbation theory

Jorge Pullin
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1. First lecture: black hole perturbation theory.
2. Black hole collisions: initial data and test cases.

3. Boosted black holes and inspiralling collisions.




Motivation: the final stages of black hole collisions are well

approximated by a single distorted black hole that “rings down”
Into equilibrium.
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Plan of first lecture:

Perturbation theory, gauges.

The Zerilli and Regge-Wheeler equations.
The integration of these equations.
Perturbations of rotating black holes.



Plan for today: to describe the framework for doing black hole
perturbation theory. We will start with perturbations of
Schwarzschild black holes and then consider the Kerr case.

There are many frameworks for doing perturbation theory, | will
refer to the two most popular ones: the first one is based on

direct examination of the Einstein equations and leads to the so
called Zerilli-Regge-Wheeler equations. The second formalism is
based on the Newman-Penrose formulation of GR and leads to the
Teukolsky eguation (for rotating holes) or the Bardeen-Press
eguation for the non-rotating case.

Both frameworks have pros and cons. The ZRW quantities are
first order in the time derivatives of the metric. The Teukolsky
function is second order. The latter however, has a better physical
motivation: it isacomponent of the Weyl spinor in agiven null
tetrad; moreover it can be generalized to rotating holes.



Perturbations, the idea:

Give yourselves a one-parameter family of metrics, that are
“nearby” agiven exact metric g

_ (0) (1) 2 (2)
gnn _gnn +egnn +e gnn +"'

Substitute in the Einstein equations R,, =0
And keep terms order by order in epsilon.

Generically, this sounds pretty much like the way one proceeds
any time one studies a problem in perturbation theory in physics.

However, in genera relativity there is an added complication:
the issue of gauge. That is, how do | know that | am perturbing
“the geometry” as opposed to “the metric” (that is, making just
a coordinate transformation)?



The issue of gauge:

If one isto confuse coordinate transformations with small perturbations
the coordinate transformations must be “small”, x™=x"+ex"

It iswell known (exercise) that up to first order, an infinitessmal
coordinate transformation translates itself, acting on a tensor,
Into alLie derivative,

gmn(:L) + I—x gmn(0) — gmn(:L) +X(m;n) L ooks like E&M

gauge transformation
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Notation: g isusualy called h_

For higher ordersin epsilon, the situation is less geometrical and more
Involved, see Bruni et. a. CQG 14, 2585 (1997); gr-qc/9609040.



Gauge invariance:

To deal with thisissue there are two approaches:

a) Construct gauge invariant quantities. Moncrief, Ann. Phys. 88, 323 (1974)
b) Worked in afixed gauge.

Remarkably under-appreciated is the fact that these two approaches
are essentially the same.

Aslong as one worksin a (uniquely fixed) gauge, the quantities
one is dealing with are gauge invariant, in the sense that one can
trand ate them into any gauge one wants.

Thisis kind of obvious, but somehow it leads to interminable
arguments...



The Regge-Wheeler notation and the Regge-Wheeler gauge:

(T. Regge, JA. Wheeler, Phys. Rev. 108, 1063 (1957))

We are interested in considering perturbations in which the
background spacetime is the Schwarzschild metric. It therefore makes
sense to expand the perturbations in spherical (tensor) harmonics.

Under rotations in the theta-phi sphere, h,, h, , h, behave like

trr torr

scaars. (h,;h,) and(h;h,) behaveasvectors.

Ny o
ghq hrf£+/jlsatensor.

We can then proceed to decompose. For the scalarsit is as usual,
they are characterized by “quantum numbers’ L, m, and are given

by afunction of (r,t) timesaspherical harmonic Y ,, The parity
of these objectsis (-)-.



There are two kinds of vectors, of different parity. Onekind is
simply given by the gradient of aY,, and has parity (-)-.

The other isthe “dual vector” (contraction with the Levi-Civita
symbol in two dimensions, and has parity (-)-*1 (it's a pseudo-vector).

Finally, there are three kinds of tensors. One is given by the double
covariant gradient of Y ,, and has parity (-)-- Another is a constant
times the metric of the sphere, aso with parity (-)-. Thelastis
obtained by “dualizing” the first tensor with the Levi-Civita
symbol in each index; it has parity (-)-*1.

We can therefore group perturbations into two separate groups,
depending on thelir parity behavior with respect to the sphere:
even (-)- and odd (-)-* parity perturbations.



The corresponding metric tensors are;
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The Regge-Wheeler gauge:

Perform a gauge transformation that eliminates the second angular
derivatives. The final form of the metrics are,

¢ 0 0 0 hytr)u
€0 0 0 h(trn)

odd —e ’ 0 o

Mo & 0 o 0 0 l:Jsm(q)(ﬂ/ﬂq )R_(cos(q ))

dy(t.r) htr) 0 0 §

g’l—lo(t,r)(l- 2M /) H,(t,r) 0) 0) U

S H(EN H,@t,r) @ 2M/r)* 0 0 .

even :e 1\*™ 2\" u
e o 0 K1) o g )
g 0 0 0 XSt



Consider the eguation we introduced for the gauge transformations,

v (D — (1)
gmn _gmn +X(m;r)

And assumefor g and g that they have the Regge-\Wheeler “form”.
And aso assumethat g isin the Regge-Wheeler gauge.

For instance, for even waves, assume h,, hy, H; and G are zero.

And also assume an appropriate angular decomposition for the
gauge transformation vector,

X =M, (Y, , x'=M/tr)Y,,,
X2:|\/|2(t,r)(ﬂ/ﬂq>Y|_M, x3:M2(t,r)/sin(q) QAL VY



Then, remarkably, the quantitiesM,, M, M, are completely
determined by the following equations (Gleiser 1996),

1) 4, (ir-gdmlz; m;;{;) Notation: A=M
: 5 51 otalion. A=
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And the components of the metric in the Regge-Wheeler gauge
can be written in terms of the components of a metric in any gauge as,

MR = OF 4 (5 — z_.m('i”f’;‘,,- 2 ”m)
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e
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Details can be found in R. Gleiser, C. Nicasio, R. Price, JP gr-qc/9807077

Why does this happen? Because the Regge-Wheeler gauge is
unigue.

Therefore any quantity computed in such agaugeisin itself a
gauge invariant. Explicit proof of this are the formulas we just

introduced: they represent the value of the computed quantity in
terms of the metric in any gauge!

The reason for thislong detour is that in the following | will use
calculations in the Regge-Wheeler gauge. Some people might have
the impression that these calculations are only useful in a particular
gauge and are lacking in generality. THEY ARE NOT! Any

result we compute can be expressed straightforwardly in a
“manifestly gauge invariant” manner by substituting the
Regge-Wheeler gauge quantities in terms of a general gauge using
the formulas we just introduced.



The field eguations

| illustrate here with the odd parity case, which issimpler. This
was worked out by Regge and Wheeler in the reference cited. The
more important (and involved) even parity case was worked out
later by F. Zexilli (Phys. Rev. Lett 24, 737 (1970)).

One now proceeds to insert the metrics we just considered into
the usual Einstein equations, and we keep only terms linear in epsilon,

R.=0: (1-2M/r)'wh, +[(1- 2M /r)h]'=0

R;=0: (1-2M/r)*w (hy-w h - 2h)/r)+(L- )(L+2)h /r*=0

R.,=0: W h-h')+2w h/r=(4Mh,/r- L(L+Dh)/[r*@A- 2M /1)]
Where we have assumed that the perturbations are harmonic in

time with frequency omega. All other Einstein equations vanish.
Moreover, the latter is a combination of the first two.



If we now eliminate h, between the two first equations, and defining,

Y oy =(1- 2M /r)h /r, ad n=r+2MIn(r/2M - 1)
Weget, d¥y 0/ dr” +Wy (r)y o =0

Or, in the time domain,

ﬂzy odd 1-[2y odd V
‘Hr ﬂt t (r)y odd

With V(r)=[- L(L+2)/r?+6M /r3(1- 2M /r)

Which is known as the Regge-\Wheeler equation and describes
odd parity perturbations of a Schwarzschild black hole.



The even parity egquation has generically the same form,

ﬂ even ﬂ even —_—
Z‘I)T/rz _ ztz VY e =

But the “potential” is different. It is known as the Zerilli equation.

V(r)=(1-2M/r )é 2372“5/'3 12M (L- (L + 2)5[ 3'\"0“ (L- 1)L(rL2|+1)(L+2)0

o
wherel =L(L+1)- 2+6M /r and

4r(r- 2M) & K r- 3M N 2 <
L(L+1)(r(L-)(L+2)+6M)E& r-2M H (r(L-)(L+2)+6M)

Y even =

In terms of the Regge-Wheeler gauge perturbation quantities.



The Zerilli and the Regge-Wheeler equations each describe one of
the two degrees of freedom of linearized gravity propagating in a
black hole background. With minor modifications they also describe
electromagnetic and scalar fields.

The derivations we followed were in the Regge-Wheeler gauge,
but by now we know that the quantities of interest, y , are gauge
Invariant quantities that can be expressed in terms of the metric

perturbations in any gauge.

It is worthwhile mentioning that approaches that are “manifestly
gauge invariant” to these equations can be constructed. Moncrief
for instance, has a beautiful construction from the Hamiltonian
formulation V. Moncrief, Ann. Phys. 88, 323 (1974)

Notice that the equations are wave equations in Cartesian 1+1
dimensional spacetime (in spite of the fact that we are in spherical
symmetry), and that they are written in terms of the “tortoise”
coordinater..



The tortoise coordinate

=r+2MIn(r/2M - 1)
Arises from absorbing a (1-2M/r) factor,

dr, = /0y / 9edr =(1- 2M /1) dr

And coversthe “exterior” of the black hole, since,

r® ¥ for rr® ¥
r® 2M for r.® -¥
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The potential:
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The potential isan analog
of the usual centrifugal
plus Newton plus GR
corrections potential

of the two body problem.

The peak corresponds to
the barrier that normally
determines the ISCO
(iInnermost stable
circular orbit) in the
general relativistic

two body problem.



The physical meaning of the Zerilli function:

We manipulated the Einstein equations to obtain a second order
wave equation for a certain quantity. Why not choose another
guantity? Y ou can do it, but the one we chose has interesting
properties. To see thiswe will go to aregion where things are
under control, far away from the hole. There it is customary to
describe things in the radi ati on gauge (MTW),

ds® = - E’i M, 2M oc )—dt B s X +o( ) Gtax’
r? e M7y r* g
e 2M _3M°
+eei +0, X! dx"
% r 2r i )ud

So in the Regge-Wheeler notation, h, =0@/r), H,=0(/r?)

And the tracelessness condition N, +h, =O(1/r*) implies

K =3G+0O(1/r%)  whichin turn meansthaty aven =12rG



And therefore,

o 1y even v
— LM
q 12 r

So the Zexilli function really captures the “essence” of gravitational
radiation!

With this setup, it is straightforward to work out formulas for
radiated energy and angular momentum, using the Landau-Lifshitz
pseudo-tensor,

dP 2 &. 1. . 2l
C(I)Vv\\;er :1r6p ghqf 2+Z(|"hq - Iy )ZH

Power =

y C.Cunningham, R. Price, V. Moncrief, Ap. J. 230, 870 (1979)




Exercise: the time doman code




Solving the Zerilli equation

E. Ching, P. Leung, W.-M. Suen, K. Y oung Phys. Rev. D52, 2118 (1995) and references therein.
In the numerical experiments we saw that perturbations of a black hole
of finite duration in time generate, in addition to an initial
transient, a characteristic ring-down followed by a power-law tail.
Let ustry to understand better analytically how these behaviors
come about.

Consider the Green’ s function solution to the Zerilli equation,

f (xt) = GHY[G(X, Y, t)f (y,0) +G(x, y,t)f (y,0)

Where G(X,y,t) Isthe Green’ s function for the time-domain Zerilli
eguation. It can be obtain via Fourier transform from the frequency
domain Green'’s function, which is easier to obtain,

G(x y.1) = 5 dt G(x, y,t)e™



One way of obtaining the frequency-domain Green’s function is by
constructing two independent solutions f(w,x) and g(w,x) to the
homogeneous eguation, one of them satisfying the left boundary
condition, the other one the right boundary condition,

multiplying and dividing by the Wronskian,

i Tw,x)gw,y) o

G(X, y,w) T oww) Y Where Ww)=1f'g-g'f
V=1 w, y) gw, x)

) , Y <X

t W (w)

To construct the time-domain Green’ s function we use the inverse
Fourier transform, which for t>0 requires following a contour
encircling the lower half of the complex w plane. Examining the
singularity structure of the Green’s function in that domain we
can see:



a) The Green’ s function will have poles wherever the Wronskian
vanishes. At these points, f and g are linearly dependent, meaning
that one is finding a solution that satisfies outgoing boundary
conditions at both the horizon and at infinity. Such solutions are

the quasinormal modes of the system and have a complex frequency
with negative imaginary part.

b) If the potential is of compact support in X, one can impose the
outgoing boundary condition immediately outside the domain of

the potential. One can then integrate the differential equation for
afinite amount of x range to obtain f,g. Therefore these f,g’ s cannot
have singularities. Thisisalso true if the potential decays fast with x.
If the potential has a slower than exponential tail, f and g will have
singularities in the complex plane. These singularities have the

form of abranch cut along the negative imaginary w axis. When
these singularities reach w=0, they produce the power-law tails.



C) Finally, the “prompt” contribution comes from the circle at
Iw|=infinity.

Solving the Zerilli equation

In curved space-times Huyghen's principle does not apply:
waves do not propagate freely but scatter.

The ringdown can be viewed as waves bouncing around the
potential well of the Zerilli potential. Their frequency is therefore
determined by the light travel time across the potential, which

IS proportional to the mass of the black hole.

Thetalls can be viewed as “accumulation” of waves produced by the
back-scattering on the curved spacetime.

Notice that these phenomena happen also for stars. (\W-modesin
neutron stars).



Second order perturbation theory:

One can repeat all the manipulations we performed keeping
guantities up to second order in epsilon.

What about the gauge issues? One can proceed in the same way,
based on the following: consider a gauge transformation purely
of first order in epsilon. Let us choose it in such away that the
second order quantities are brought into the Regge-Wheeler
gaugeto first order in epsilon. This can obviously be done, since
the second order pieces play no role and we repeat the same
calculations as before.

Thefirst order gauge transformation will introduce changesin
the quantities at second order.



We can now perform a gauge transformation that is purely

of order epsilon™2 in such away that the second order pieces
of the metric are transformed into the Regge-Wheeler gauge.
Such atransformation does not affect the first order pieces.
Therefore the metric to first and second order is put, via
unique formulas, into the Regge-Wheeler gauge.

So we go through the same manipulations as before and end

up with an equation that looks exactly like the first order Zerilli
equation, but that also contains pieces quadratic in the first
order perturbations.

There ismore ambiguity in what to call “the second order

Zerxilli function”. It has a rather unambiguous piece, which depends

on the second order metric perturbations exactly in the first way that

the first order Zerilli function does on the first order metric perturbations.



But the “second order Zerilli function” has also pieces quadratic
In the first order perturbation, that we can choose as we wish.

The bottomline in what is useful isto make the choicesin such a
way that the physical quantities of interest have asimple and well
defined dependence on the chosen Zerilli function.

For instance, a carelessly chosen Zerilli function might diverge for
large values of r. This actually happened in the first attemptsto
finding such afunction. Of course, the physical quantities do not
diverge, so it just reflects a poor choice of function to work with.

The detalls of al this are just too long to summarize here. Let it
be said that a second order Zerilli formalism, including the relations
to the asymptotic energies has been worked out for the L=2 m=0

perturbations. R. Gleiser, C. Nicasio, R. Price, JP, gr-qc/9807077
G. Davies, gr-qc/9810056



Detail: in the even parity case, when one manipulates the Einstein
eguations to reach the Zerilli equation, one differentiates and then
Integrates the equations with respect to t. Thisis a curious procedure,
since in principle it implies that one could add an arbitrary function

of r to the Zerilli function. Thisistrue, one ssmply ignores this freedom.

In the second order case, after differentiating the Einstein equations,
one cannot simply integrate back with respect to time because that
would mean integrating the pieces quadratic in the first order
perturbation. Thisisapriori feasible, but not in closed form.

One therefore settles by considering a Zerilli equation with third
order derivatives, and operating with it. Since by iteration of the
Einstein equations at the initial slice one can obtain arbitrarily high

time derivatives of the metric, one can in practice evolve.



Perturbations of rotating black holes:

Due to the complexity of the Kerr metric, it becomes impractical

to proceed ssmple-mindedly to massage the Einstein equations to

get a perturbative equation. This forces us to think harder about what
one isdoing. Couldn’t one find a general rewriting of the Einstein
equations such that in the case of small perturbations around a
spacetime the perturbations immediately become controlled by wave
equations?

In fact, adriving force behind the development of current hyperbolic
formulations of the Einstein equations for numerical relativity isto
achieve such agoal.

For instance, see Anderson, Abrahams, L ea, Phys.Rev.D58:064015,1998

To obtain the perturbation equation for rotating black holes,
Teukolsky used the Newman-Penrose formalism.



The Newman-Penrose formalism is a notation to write various
guantities and equations that appear in relativity. It starts by
considering a (complex) null tetrad (I',n,m,m) such that,

| i=1=- mm
A notation isintroduced for the directional derivatives along the
tetrad vectors,

D :IWm1 D:nn‘ﬂmi d :mn‘ﬂm’ d* :mmﬂm’

Anda,b,g,e,k,l ,mn,p,r,s t,areanotation for thespin coefficients

of thenull tetrad.
Finaly, the projectionsof the Weyl tensor,

Yo=-Crs ™1™ M, Yy=-Cpppe ™" 1,
Y,=-Cpye!"™'m'n®, Y3=-Csl"'n'm'n°,

Y,=-C nN"m'n" n° .
4 mr s



One can write the Bianchi identities and the Einstein equations using

these and related quantities.
Three of the Bianchi identities, iIf one substitutes the vacuum

Einstein equations in them, read,

d” - 4a+p)Yy- (D- 4r - 22)Y,- XY, =0
(D' 4g+m)Y0' (d' 4t - Zb)Yl' %YZZO,
(D-r-r -3e+e)s-(d-t+p -a -3b)k-Y,=0.

Consider now a spacetime given by the Kerr metric plus a
small perturbation. One can easily find null vectors that form
a Newman-Penrose tetrad. One also can see that for aKerr

spacetime,
YO:Y1:S :k =0 DY2:3rY2’ dY2:3tY2



And one can combine the above equations into asingle

equation for Y 4 (or Y ,; actually, both can be shown to be

equivalent, since Y , becomes Y ,under the interchange of the
vectors| and n).

Since these Y 's are scalars, and vanish for the background under
an infinitessimal coordinate transformation they are invariant.

V'=Y - Xmﬂ % background
m

And asimilar reasoning leads to the proof that they are invariant
under infinitesimal tetrad rotations.



The scalars have remarkably simple connections with physically
Important quantities. For instance, if one considers outgoing

linearized waves of asingle frequency, it is reasonably
straightforward to notice that,

Y4 =" (thtq ) iF\)tqtf ) :'Wz(hqq B ”hf )/2

And using the pseudotensor formulas we introduced before, one
gets,

d°E _ r?

= Y, ]2
dtdw 4pW2| 4!

Details: NP formalism: Chandra’ s article in “General relativity,

an Einstein centenary survey” by Hawking and Isragl, Cambridge.
S. Teukolsky, Ap. J. 185, 635 (1973).




What does the Teukolsky equation look like in practice?

The Kerr metric in Boyer-Lindquist coordinates,
ds® = (1- 2Mr /S)dt? + (4Mar sin®q / S)dtdf - (S/D)dr?- Sdq?
- sin?q(r? +a? +2Ma?r sin®q / S)df °

where M isthe mass, aM the angular momentum,

D=r%- 2Mr +a%,S=r?+a?cos’q

It should be noted that this metric is quite more involved than the
Schwarzschild metric: it is non-diagonal, rational coefficients with
non-trivial dependence on theta, etc.



And the Teukolsky eqguation:

&r°+a%)? . szqUﬂZY AMar %Y €a® 1 Uf°Y
C i te - u
& Jqt2 D M &D  sin’qQqf 2

éa(r - M)+icosqgﬂY

_psgemiYo 1 ﬂa%n 0. 268

e o smqﬂqg ﬂqz € D sinq H 1
-ZseM(r _a)-r—iacosqgﬂﬂszcotq—s)Y:O

& D o Tt

Whereif S=2, Y =Y,

Sy ay r =-1/(r - iacosq)
s=-2,Y =r 4



This equation is considerably more involved to handle than the
Zexilli equation. To begin with, it is not separable in anglesin the
time domain. In the frequency domain it is separable. That is, if

OuU assume, - -
Y Y =e "™ 5, w)R(r,w)

Then the S's become the spheroidal functions S ,,(-& w, cosg).

In other words, if you wish to evolve things in time, you will need

a 2+1-dimensional code. Thiswas only recently achieved
(W. Krivan, P. Laguna, P. Papadopoulos, Phys. Rev. D54, 4728;D56, 3395 (1997))

When a=0 one does not recover the Zerilli equation. The resulting
equation is the Bardeen-Press equation and it contains in its real
and imaginary partsthe Zerilli and the Regge-Wheeler equation
(both parities are handled at the same time).

See Chandra “ The mathematical theory of black holes’, Oxford.



