
Lectures on loop quantum 
gravity 

Rodolfo Gambini 



1) Why quantize gravity? 
2) General relativity 
3) Hamiltonian treatment of constraint systems 
4) Totally constrained systems and the issue of time. 

5) Quantization of constrained systems 
6) Canonical analysis of general relativity 
7) Canonical analysis in terms of Ashtekar variables 
8) Loop representation for general relativity  

9) Spin networks and quantum geometry 
10) The issue of the dynamics. 
11) Applications: loop quantum cosmology, black hole entropy,   
and potentially observable effects. 
12) Conclusions  



1)  Why quantize gravity? 

Quantum mechanics and general relativity have given us a profound understanding 
of the physical world, including scales ranging from the atomic to the cosmological. 

Quantum mechanics describes nuclear and atomic physics, condensed matter, 
semiconductors, superconductors, lasers, superfluids and led to important 
technological developments, for instance, in modern electronics. 

General relativity leads to relativistic astrophysics, cosmology and the GPS technology. 

These two theories have nevertheless destroyed the coherent vision of the world 
given by classical mechanics and non-relativistic theories. 

General relativity is local, deterministic and continuum, whereas quantum mechanics 
is probabilistic, non-local and discrete. In spite of their empirical success, GR and QM  
offer a schizophrenic understanding of the physical world. 

General relativity has taught us that space-time is a dynamical entity just  
like any physical object. Quantum mechanics has taught us that physical objects  
are composed of quanta and have states that can be superposition of different  
behaviors. 



With the exception of classical mechanics, all current theories of physics are 
incomplete and contain inconsistencies. They are all valid to describe phenomena 
at certain scales and in certain regimes but they display inconsistencies when  
applied outside their range of validity. 

Electromagnetism: The energy and the mass of a point charge are infinite. The  
self-interaction of a charge with its own field is ill-defined, yielding “runaway”  
solutions. The treatment of the charged point particle is clearly incomplete.  

The quantum description eliminates some infinities, for instance avoiding the  
collapse of the electrons into the nucleus.   

But even in Quantum Field Theories 

a) Divergent vacuum energy <0|H|0>=∞. 
b) Distributional field operators 

These observations lead us to expect that at high energies and small 
scales the universe should behave as composed of quanta of space-time. How 
is one to describe such objects? 



c) Ill defined interactive theories 

We only have rigorous theories in dimensions less than four or highly symmetric 
theories as N=4 supersymmetry. 

d) Physical quantities as scattering cross sections are infinite when all radiative 
corrections are taken into account, 

The divergences in G may be reabsorbed redefining the constants and the fields 
λ,m,φ, so G results well defined. The series, however, for many physically  
Interesting cases are divergent. 

Renormalization may be considered as a short-cut which allow us to compute  
physical quantities without worrying about what is going on at extremely short  
distances. 

We are ignoring any possible space-time microstructure. 



One also has infinities in general relativity. 

A generic space-time containing matter will develop singularities in its evolution 
(Hawking and Penrose singularity theorems). 

At a singularity (big bang, black holes) the curvature diverges and matter acquires  
pathological behaviors. More generally, a space-time is singular if it contains at 
least one incomplete geodesic. 

The geometric description of space-time breaks down at the singularities and only 
quantum considerations could solve these pathologies. 

Summarizing: all known theories of modern physics are partial. Inconsistencies 
appear when we attempt to apply them beyond their realm of validity. 

Only quantum gravity could be complete. It will be relevant at scales when  
inconsistencies and infinities arise (big bang, black holes singularities,  
ultra high energy, black hole evaporation). 



The problem of unifying quantum mechanics and general relativity is quite 
complex. Both theories are radically different. 

Quantum mechanics in its most developed form, quantum field theory, uses a  
background space-time in which the notion of particles makes sense. This  
preferred structure is incompatible with general relativity where space-time is 
dynamical. 

The properties of continuity and differentiability of space-time are essential in  
general relativity. But in quantum mechanics a quantized space-time is possibly 
discrete. 

We lack experimental evidence of phenomena that are dominated by quantum 
gravity effects, a theory that becomes relevant in regimes highly difficult to access. 

A lot of physicists, motivated by the last observation, have been led to ignore  
quantum gravity. But ignoring a problem does not make it go away. 

We can state that quantum gravity effects are going to be very small, but we do not 
know how to prove that they actually are (“How do you know the effects of a theory 
you do not know are small” A. Salam).  



The search for consistency: 

Searching for consistency in physics has been the source of great discoveries. 

Maxwell theory + classical mechanics -> Special Relativity 

Special Relativity+ quantum mechanics -> antiparticles, quantum field theory 

Special Relativity+ Newtonian gravity -> General Relativity 

In all cases progress resulted from taking seriously both points of view and  
constructing a better synthesis. 

Two main approaches: 

Canonical quantization and path integral quantization of general relativity->  
Loop quantum gravity. 

Unification of gravity with other interactions -> string theory. 

The existence of more than one approach reflects the state of the art. We still 
do not have a theory that is completely satisfactory. 



General relativity: 

Riemannian geometry, a brief review. 

Einstein noticed that non inertial systems of reference are locally equivalent  
to systems in a gravitational field and therefore a theory of gravity will be generally 
covariant.  

General relativity is a theory of gravity but instead of describing the latter as a force, 
it describes it as a deformation of space-time.  

The geometrical properties in a given coordinate system are given by the metric 
tensor: 

Let us recall the properties of a Riemannian geometry in a metric manifold without 
torsion. 

The covariant derivative defines a mapping from (k,l) tensors to (k,l+1) tensors,  



The covariant derivative, as a map, has the following properties: 

It commutes with the contraction: 

On scalars it reduces to the partial derivative: 

and due to vanishing torsion:   



The previous conditions do not define uniquely the covariant derivative. 

                                          with Γ symmetric satisfies the conditions. Under  
coordinate transformations, Γ transforms in such a way that the covariant 
derivative of a vector is a (1,1) tensor. 

In Riemannian geometries one chooses “metric compatibility”, 

Which is convenient because contractions commute with derivatives. A metric 
compatible derivative with no torsion has a uniquely defined form, 

known as the “Christoffel symbols”. 



Given a curve with tangent vector ta, one defines the “parallel transport” of a  
vector va as, 

ta 

We still do not have a satisfactory definition of curvature. Notice that in  
curvilinear coordinates Γa

bc  can be non-vanishing and still have a flat manifold. 
To determine if a manifold is curved one takes a vector and parallel transports 
it around a closed circuit, 

For instance, in the example someone starts with a vector in the north pole, 
carries it as parallel to itself as possible (and tangent to the Earth) to the equator, then 
move from a to b and then brings it back. The fact that it does not come back parallel  
to its original orientation is proof the Earth is curved. The angle depends on the area  
of the circuit traveled and how curved the manifold is. 



To make the previous concept precise, we consider 
an infinitesimal closed circuit. We have that, 

Where Rabd
c is known as the curvature tensor or Riemann tensor and is  

defined by, 

And it satisfies certain algebraic identities, 

And the Bianchi identity, 

€ 

∇a∇b −∇b∇a( ) vc = Rabc
dvd



One can define important “traces” of the Riemann tensor as the Ricci  
tensor, 

And the scalar curvature 

In terms of these one can define the Einstein tensor: 

For which the Bianchi identity reads: 



The Einstein equations: 

They determine the geometry in terms of the energy and stress present in the  
matter. 

Tµν is the energy-momentum tensor. The above equation may be consider the  
relativistic generaliztion of the Poisson equation of Newton’s theory of gravity, 

Both contain second derivatives but the Einstein equations involve both space 
and time derivatives. This means that change in the matter content do not  
propagate instantaneously. The energy is automatically conserved 

The Einstein equations may be extended to include a cosmological constant, 

€ 

∇µTµν = 0



The cosmological constant is related to the vacuum energy of the fields, 
in GR the actual energy matters and not the energy up to a constant. 

And the vacuum energy results from the sum of the fundamental energy of each of 
the modes composing the field, 

this contribution diverges, but if we assume that the Planck energy imposes a 
natural cutoff we would have that 

But cosmological observations indicate that  

And this constitutes the “cosmological constant problem”, we have a discrepancy of 
120 orders of magnitude. 

It is still not clear what could be the role of quantum gravity in the solution of this  
problem  



The Einstein-Hilbert action: 

The action that leads to the Einstein equations is, 

and variations with respect to the metric yield the field equations. 

It is worthwhile pointing out that in general relativity geometry is the central idea 
and the theory is covariant in its description of nature. The dynamics is not  
unique. 



Alternative theories: 

We mention here a couple of alternatives to general relativity that have been  
considered in the literature.  

The first one are the scalar tensor theories, where gravity in addition of being described 
by a curved geometry is described by a scalar field, 

The second one is theories that have higher order terms in the action 



Hamiltonian treatment of constrained systems: 

A theory whose dynamical variables depend on functions that can be chosen 
arbitrarily is a gauge theory. In such a theory the equations of motion and the  
initial conditions do not determine the evolution uniquely. 

General relativity is a gauge theory since one can perform changes in coordinates 
as one evolves that yield different metrics starting from the same initial data. The  
evolution of the space-time metric depends on arbitrary functions. As we will see 
for each arbitrary function there will exist a constraint on the canonical variables. 

Dirac analysis of gauge theories: 



If det(Hab) is non-zero then the acceleration can be determined from the  
initial data. If it is zero, only certain components can be determined in terms 
of the others. Similarly, when one determines the canonical momenta, 



There exists a 2N-M dimensional constraint surface in phase space. One then 
constructs the Hamiltonian, 

The canonical equations are derived by considering variations of δq and δp. 
If the system has constraints such variations are not independent. 

Given M arbitrary functions uα(q,p) one has that, 

Then the total Hamiltonian is given by  



The equations of motion can be derived from the action 

by taking variations with respect to p,q and u.  
One has that te time derivative of a physical magnitude is, 

One has to satisfy consistency conditions, that ensure that the constraints 
are preserved in time, 

There exist three possibilities: 

a) One gets new constraints. One needs to impose additional conditions, 
called secondary constraints (which one also needs to check are preserved in 
time), 



b) One gets inconsistencies and the theory does not exist. 

c) Some of the Lagrange multipliers get fixed. The multipliers must satisfy 
M+K equations, 

If the dynamical system is consistent then uα=Uα+Vα

with U  a particular solution of the inhomogeneous equation and V such that

We have introduced the notation  

F is weakly equal to G if they are equal on the constraint surface. 

Let us suppose that there are L independent solutions for V 

Then:                                                                   with           L independent functions  

€ 

uα =Uα + v l  Vl
α

€ 

HT = H +Uαφα + v lVl
αφα

€ 

€ 

v l



Functions of the dynamical variables that have vanishing Poisson brackets  
with all the constraints are called first class. The                        are primary constraints  
that are first class. 

One can also have secondary constraints that are first class. First class constraints 
generate gauge transformations (Dirac’s conjecture). € 

φm =Vm
αφα

Given a function of phase space F(q,p) and assuming one knows q(t1), p(t1) 
that satisfy the constraints one has that, 

And if one chooses to evolve with v’ instead of v, one will get an F’ such that, 

And F is gauge dependent. Primary constraints that are first class generate 
gauge transformations. 

€ 

F(t1 + Δt) = F(t1) + {F,H}Δt + vmΔt{F,φm}

€ 

δF = F '−F = δvm{F,φm}



Totally constrained systems: 

This type of system is very important because general relativity belongs in this 
class. 

In the usual Hamiltonian framework the dynamical variables evolve in time which, 
although observable, is not a dynamical variable itself. 

There exists a more symmetric treatment where one introduces the time as a  
dynamical variable. X(t),T(t) and both space and time are functions of an  
unobservable parameter t that can be redefined freely t‐>t’=f(t) . 

As any theory depending on an arbitrary function, it will be treated as a gauge 
theory. To give an example of such a treatment we consider the parameterized 
non-relativistic particle. 

Configuration variables X(t), T(t).  
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The canonical momenta are, 

And there is a constraint 

And the Hamiltonian vanishes, 

The total Hamiltonian is 

And the equations of motion are: 



HT(p,q) is proportional to a first class constraint and not only generates evolution 
but simultaneously it generates a gauge transformation. The action is, 

The general form of the action for a totally constrained system is 

The theory is invariant under “time” reparameterizations and the Hamiltonian is a  
linear combination of the constraints  

We will see that general relativity is a totally constrained system with first class 
constraints. 

€ 

S = pa ˙ q a −µαφα (q, p)[ ]∫  dt



A constraint is second class if it is not first class. To treat theories with second 
class constraints one needs to introduce the Dirac brackets { , }*. 

The latter satisfy {X,q}*=0, {X,p}*=0 with X a second class constraint.  

One says that the constraints have been strongly imposed because their 
Dirac brackets with any dynamical variable vanish. 



Observables: 

Functions of phase space that are gauge invariant are called observables, 

Where φα are the first class constraints. 

In a totally constrained system like general relativity the observables 
are also constants of the motion, since, 

This is the root of the problem of time in canonical quantum gravity. If the  
physically relevant quantities are constants of the motion how does one 
describe evolution? 
€ 

{F(p,q),φa} ≈ 0    ⇒     {F(p,q),HT} ≈ 0

€ 

{F(p,q),φα} ≈ 0



The issue of time: If the physically relevant quantities in  
totally constrained systems as general relativity are constants 
of the motion, how can we describe the evolution? 

1) Gauge fixing: 

2) Evolving observables: Bergmann, DeWitt, Rovelli, Marolf  

For instance,  for the relativistic particle. 

Two independent observables: 

Notice that one needs to assume  
that there are variables as         that are physically  
observable, even though they are not Dirac observables 



Quantization of constrained systems 

The treatment of second class constraints is the more direct one, although 
it is not trivial. 

The key correspondence rule is that the graded commutator of two quantum 
operators should be equal to iħ times the operator associated to the Dirac 
bracket, 

The procedure may encounter difficulties. One has to find a realization of the 
algebra of operators. One may admit deviations of order  ħ2 , 

In many situations one also wishes to require the operators be self-adjoint. 
These requirements are generically not easy to satisfy and sometimes can 
be unsurmountable. Let us now turn to how to treat first class  constraints. 

  

€ 

[A
∧

,B
∧

] ± = i{A,B}
∧ *

  

€ 

[A,
∧

B
∧

] ± = i{A,B}* +O(2)



a)  Reduced phase space quantization. 

i) Gauge invariant quantization: one quantizes the observables 

Quite non-trivial, in the case of general relativity it is not known how to proceed. 

ii) Gauge fixing 

One introduces additional gauge conditions that do not commute with the 
first class constraints. One ends up with a second class set of constraints. 

The main challenge of this approach is how to realize the algebra, constraints 
that may be non-local in nature and the symmetries are broken. 

Example: electromagnetism 

ET, AT gauge invariants 

  

€ 

[F
∧

,G
∧

] ± = i{F,G}* +O(2)

  

€ 

[Ei
T (x),A j

T (y)] = −i (δij −
∂i∂ j

Δ
)δ 3(x − y)

 

 
 

 

 
 



b) Dirac quantization 

The method of quantization introduced by Dirac in 1966 has been generalized: 
Ashtekar et. al. J. Math Phys. 36, 6456 (1995) 
Giulini and Marolf Class. Quan. Grav. 16, 2479 (1999). 

Schematically: 
1) One chooses a set S of classical variables such that any quantity in phase 
space is given by a sum of products of elements of S and their Poisson brackets 
belong in S. An example of a set S are the canonical variables themselves qa,pa . 
2) To every F in S we associate an operator in an algebra that act in  
an auxiliary (“kinematical”) Hilbert space Haux and such that the commutator of two  
such operators F, G is given by, 

3) The realization of the elements of S is such that 

4) The first class constraints are promoted to self-adjoint operators in Haux. 
Operators in Haux are in general gauge dependent and do not commute with 
the first class constraints. The idea is to define a physical Hilbert space in which 
the Dirac observables are well defined operators. 

  

€ 

ˆ F , ˆ G [ ] = i{F,G}



The elements |Ψ>phys of Hphys are annihilated by the constraints, 

And if Q is a Dirac observable,   

And therefore its action keeps Hphys invariant 

Generically, the physical states are distributional in Haux and belong in the  
dual of a subspace of Haux. 

Example:   



The Algebraic Quantization procedure (group averaging) for the construction of an  
inner product in the physical Hilbert space leads to, 

And the procedure also ensures that the observables are self-adjoint. 

Difficulties with the algebraic quantization procedure: 

But at a quantum level one may encounter corrections: 

And the original invariances may be lost unless the operator Dαβ  annihilates 
 the elements of |Ψ>phys. The additional terms are known as gauge anomalies. 

Finally, the group averaging technique used to define the inner product does not  
always work. Some constraints are not group generators. 

  

€ 

<ϕ |ψ >phys= dp1dpNδ(p1)∫ ϕ*(p2,…, pN )ψ(p2,…, pN )

  

€ 

[φ
∧

α ,φ
∧

β ] = iCαβ
γ ˆ φ γ + 2 ˆ D αβ

Consistency 



Canonical quantization of general relativity 

1) Metric variables: 
We consider a manifold M with metric gab. 
We decompose M=3ΣxR where 3Σ is a  
spatial 3-surface. 

The foliation is generated by a function t 
on M that is constant on each 3Σt . 

This allows to describe the evolution in terms of functions of t on a given Σ. 



We introduce coordinates xi on 3Σt: 

The extrinsic curvature of 3Σ is defined by, 

and it is a measure of how 3Σ curves in M. It also contains information about 
the time derivative of the metric, 

€ 

ds2 = −N 2dt 2 + qij dx
i + N idt( ) dx j + N jdt( )



The Einstein field equations of general relativity can be derived from the  
Einstein-Hilbert action, 

One defines the canonical momenta, 

Which constitute primary constraints. 



Preservation in time of the primary constraints leads to secondary constraints, 

And general relativity is a totally constrained theory, 

With the lapse and shift  N, Na arbitrary functions (Lagrange multipliers) and 
canonical pair, 

which are first class and therefore there are no tertiary constraints. 

€ 

H = d3x [NH
~

∫ + Na C
~
a ]

€ 

{qab (x), ˜ π cd (y)} = δ c(aδ d b ) δ(x,y)



It is convenient to introduce smeared versions of the constraints, 

C is the generator of diffeomorphisms on the three-manifold and H is related 
to time reparametrization invariance and does not have a natural geometric 
action in the three manifold. 

The constraint algebra is first class but has structure functions, an additional 
difficulty at the time of quantizing the theory. 



2) Ashtekar variables 

In any manifold the metric is diagonalizable at each point by a local change 
of coordinates, xI(x): xI(A)=0. The matrix of change of coordinates is called 
tetrad in four dimensions, 

The knowledge of the tetrad allows to reconstruct the metric 

Where ηIJ is the Minkowski metric, and there is an additional symmetry 
in that the “internal” indices I,J that can be changed by Lorentz transformations  
(the coordinates xI(x) are not unique). 



One can introduce a covariant derivative on objects with internal indices, 

With ωa
I
J a one-form belonging in the algebra of so(3,1) with ωa

IJ = -ωa
JI.  

This connection can be  related with the Christoffel one demanding that 
it annihilate the triad, which in turn it implies it annihilates the metric, 

And the curvature of the connection ω is related with the Riemann tensor 
by, 

The torsion is given by 

€ 

Tab
I = Γ[ab ]

c  ec
I = ∂[aeb ]

I +ω[a
I
Jeb ]

J



The Ricci tensor is 

And the Einstein equations with cosmological constant are, 

The equations can be derived from a first order action (“Palatini action”), 

Variation with respect to ω leads to the condition that the connection be 
torsion free (unless one couples the theory to Fermions), and variation 
with respect to ea

I leads to the Einstein equations. 

where e is the determinant of the tetrad. 



One can add to the previously considered action a term that does not change 
the field equations to get the so-called “Holst” action. 

The additional term is a total divergence when the torsion free condition holds. 
γ is known as the Barbero-Immirzi parameter. It plays a role similar to that 
of the Θ parameter in Yang-Mills theory. Classically all values of γ are equivalent, 
at a quantum level it has other implications we will discuss. 

Immirzi, Class. Quan. Grav. 14, 177 (1997). 
Holst, Phys. Rev D53, 3966 (1996) 



The Holst action written in the language of differential forms is  

The original Ashtekar variables correspond to the Holst  action with γ=±1 for the 
Euclidean theory or γ=± i for the Lorentzian theory (det(η)=-1). For the Lorentzian  
case they are complex. 

In the Euclidean case, 

Defining 

€ 

RIJ
+ = dω IJ

+ −ω IK
+ ∧ωJ

+K



Ashtekar variables arise in the Hamiltonian version of the previous action. In 
particular, the Ashtekar connection will be related with  

The tetrad formalism is the natural language for the inclusion of Fermionic  
fields, 

Lorentz Algebra 
Gauge algebra 

€ 

Sψ = d4x e(ψ γΙeI
aDaψ + mψ ψ)∫

€ 

Ai
a =ω +

a0
i



Canonical quantization: Asthekar’s variables 
Barbero Phys. Rev. D51, 5507 (1995), Ashtekar, Lewandowski gr-qc/0404018 (2004) 

Defining,  

The Holst action can be written in terms of the self dual variables as, 

Where the Gauss law, diffeomorphism and Hamiltonian constraints are given by, 



The canonical formulation takes a simpler form if one chooses a gauge  
and works with real variables. 

The remaining components of the tetrad –the triad- are 

The extrinsic curvature is 

and the connection on Σ is 

That satisfies                

€ 

Ei
A = qi

aea
A  with A,B,C =1..3

€ 

Ki
A = qi

aωa
AI nI

€ 

Γi
A = ε   BC

A ωb
   BCqi

b

€ 

dE A + ε    BC
A ΓB ∧ EC = 0

Then introducing the connection 

and the densitized inverse triad 

€ 

Ai
B = Γi

B + γ Ki
B

€ 

E
~
B

i

=
1

16πGγ
E j
C Ek

Dη
~ ijk

εBCD

Which satisfy 

€ 

E
~
B

i

=
1

8πGγ
| det(q) | EB

i

€ 

E
~
B

i

E
~ j B

=
1

(8πGγ)2 | det(q) |qij

One has the generalized Ashtekar variables. 



€ 

{Aa
B (x),E

~
A

b

(y)} = δa
bδA

Bδ(x,y)



In spite of the apparent complication of the constraints if one keeps the  
Ashtekar variables real, techniques have been developed to treat them 
satisfactorily. 

The Gauss constraint is associated with the gauge freedom in the choice of the 
tetrad. 

The physical phase space of gravity is subspace of that of an SO(3) Yang-Mills 
theory. 

The constraints G and Ca generate gauge transformations and diffeomorphisms. 

    

€ 

Smearing the constraints,

G(λ) = d3x λA∫ Da
˜ E a A ,            C(

 
N ) = d3x N a∫ ˜ E b A Fab

A ,

one has that,

δ Aa
A = {G(λ),Aa

A } = Daλ
A    and   δ Aa

A = {C(N
→

), Aa
A } = L  

N 
Aa

A ,        



Quantization 

We need to pick a polarization, for instance, to work in a space of functionals Ψ[A], 
and we proceed to promote the constraints to operators in a space of “square 
integrable functionals” of the connection. 

Determining the integration measure in an infinite dimensional case like general 
relativity is delicate. To illustrate this point, let us consider what happens if one 
ignores this point as in the finite dimensional case. 

Two of the constraints do not pose problems to be promoted to operators. 
The Gauss law, 

So imposing the constraint is equivalent to demanding that the states be gauge 
invariant functions of the connection. 



Similarly for the diffeomorphism constraint, 

    

€ 

(1+ εC(N
→

))Ψ[A] = Ψ[A + L  
N 

A]

And imposing the diffeomorphism constraint implies that the state is a function 
that is invariant under diffeomorphisms. 

The Hamiltonian constraint, however, is considerably harder to implement as  
a quantum operator. It requires regularizing ill defined products of distributions. 
The regularization will in principle break gauge and diffeomorphisms invariance 
Furthermore without an integration measure on the space of connections and an  
inner product, one will not have a true Hilbert space on which define the constraint  
operators. 



The integration measure 

As we pointed out, computing integrals in infinite dimensional spaces is delicate. 
To illustrate how it is done let us consider the simpler case of a scalar field. 

One starts by considering projections of the scalar field on test functions e(x) that 
are real and smooth. Ashtekar and Lewandowski gr-qc/04040180. 

Given a set α of test functions e1(x)…en(x), we define, 

And we will say that functionals of the scalar field that can be written in this 
way are cylindrical and we will call               the space of such functions. 

The inner product in               is, 

€ 

Cylα

€ 

Cylα

€ 

< Ψ1 |Ψ2 >α= dµ(n ) f
−

1 f2
ℜn

∫



The idea is to go from Cylα to Cyl, the space of cylindrical functions defined for 
some α. 

To do this one needs to show that Ψ is cylindrical for two different sets α and β.  
There exist  consistent measures µ(n) that yield the same result. It can be shown 
that the Gaussian measures are good for this purpose.   

The idea is to include in the Hilbert space states that are limits of Cauchy  
sequences of normalizable cylindrical states. 



Measures in the space of connections 

Since connections are gauge dependent the test functions one chooses 
to smear it should be such that the resulting projections are well behaved 
under gauge transformations.  

One such smearing is the path ordered exponential along a line, (in the case of  
the line being a closed loop they are called  holonomies),    



Notice that holonomies are not linear in A. However, one can proceed in  
a similar way as in the scalar case. One considers an ordered oriented graph 
Γ with paths γ1,….,γL and group dependent functions  

€ 

Under gauge transformations    V = e−iλ

A→VAV −1 +VdV −1

U(A,γ)→V (i(γ))U(A,γ)V −1( f (γ))
with i(γ),   f (γ)  the initial and final point of the curve γ

€ 
€ 

f (U1,U2 ... UL )

For the gravity case, elements of SU(2). 



We now introduce cylindrical functions CylΓ

And define the space Cyl of cylindrical functions for some Γ.  
This space is endowed with an inner product, 

Where dU is the Haar measure on SU(2). This product coincides with the  
standard product in lattice Yang-Mills theories. However here we are working  
with a continuous theory where the states live on all possible lattices. This inner 
product corresponds to a space of distributional connections where the holonomies 
along two loops γ and γ’ that differ by an infinitesimal amount are not necessarily 
“close” in the topology of the group. 

The kinematical space Κ of loop quantum gravity is defined by the Cauchy  
completion of the space of normalizable cylindrical functions. 

We are also interested in the space of distributions in Cyl, Tcyl.  

Jerzy Lewandowski, Andrzej Okolow, Hanno Sahlmann, Thomas Thiemann 



Ashtekar, Lewandowski, Marolf, Mourao, Thiemann, J. Math. Phys. 36, 6456 (1995). 

The idea of representing wavefunctions depending on a connection in terms of  
holonomies was already used in the Yang-Mills context. For a closed loop α, the state, 

α

is gauge invariant and therefore automatically solves Gauss law. 

One can then consider states on a graph Γ composed by sets of loops. Such 
states provide an (overcomplete) basis of the gauge invariant space of states 
of any gauge theory.  
RG and A. Trias, Phys. Rev. D22, 1380 (1980); Nucl. Phys. B278, 436 (1986); 
R.Giles  Phys.Rev.D24:2160,1981 

C. Rovelli, L. Smolin, Nucl. Phys. B331, 80 (1990). 

€ 

Ψα[A]→ Tr[VλUVλ
−1] = Tr[U]



The kinematical space K 

What we just discussed was the origin of the loop quantum gravity approach. 

The spin networks based on general graphs Γ provide a simpler basis of the  
space Cyl. 
The elements of the basis are labeled by 

  

€ 

| j,α,β > → Rλ
jα
α ' | j,α ',β '> R+

λ
jβ '

β                j =
1
2

,1, 3
2

,…          α,β : − j ≤α ≤ j



Gauge invariant and diffeomorphism invariant states 

The kinematical space K is a space of arbitrary wave functionals of the connection. 
Recall that two of the quantum gravity constraints imply wave functionals are  
invatiant under local gauge transformations and diffeomorphisms. 

To impose the quantum constraints is equivalent to reducing the Hilbert space 

The K0 space; spin network states 

Let us consider a set of nodes and a set of oriented lines γ  
connecting the nodes. We assume that the paths γ only  
intersect at the nodes. We assign an irreducible representation 
ji to each link ji=1/2,1,3/2,… To each node we assign an  
intertwiner in that is an invariant tensor of SU(2). 

€ 

Κ GB

 →  Κ0
Ca →  Κdiff

H →  Hph



A valence N intertwiner satisfies, 

For instance, the 3-j symbols are the 3-valent intertwiners up 
to a factor, 

Given a spin network S={G,jl,iN}, a spin network state is given by, 

  

€ 

| s >= i1
β 1…β n 1 α1…α n  1

i2
β n1+1…β n2 α1…α n2

…iN
β nN−1 …β L

α nN−1 …α L | Γ, ji ,αi ,βi >
α ,β
∑



Some comments about spin networks: 

1) The spin network basis is also overcomplete, since intertwiners of valence  
greater or equal to four can be written in terms of 3j symbols in several forms, 

2) Spin networks can be represented in terms of loops. Any representation Rj is a 
tensor product of the fundamental representation of SU(2), for example 

3) States with different graph G or different irreducible representations j are  
orthogonal.  

€ 

< s | s >=1 < s | s'>= 0



The Kdiff space 

Let |s> belonging to K0 and φn a diffeomorphism 

Let us define a map from Cyl to Tcyl: 

It is an infinite sum and it does not belong in Cyl, however, 

Is well defined and different from zero only if  

€ 

UφPdiff | s >= Uφ | sn >=
φn

∑ Uφ 'n
| s >=

φ 'n

∑ Pdiff | s >

And the states Pdiff|s> are invariants under diffeomorphisms. 

€ 

ΨS (A) =< A | s >,        ΨSn
=Uφn

ΨS



The elements of Kdiff given by Pdiff |s> are not in a subspace of K0, they are  
distributional on K0. The inner product is given by, 

The elements of Kdiff are “spin knots” 

This concludes the construction of the kinematical space of loop quantum gravity. 
In order to gain some insight into the geometric meaning of the states we will 
introduce operators associated with the geometry. 



Operators on K 

Neither the triads nor the connections are well defined operators on K. However, 
holonomies are well defined, 

The electric field smeared on a two surface is also well defined 

€ 

E
∧

A (S)U(A,γ) = dσ1

S
∫ dσ 2na

˜ E a A (x(σ))U(A,γ)

Where the sign depends on the relative orientation of 
the surface and the curve. One needs to smear on  
a surface since ηabc Ea is a two-form. 

€ 

Uα
β (A,γ) |Γ, ji,α i,βi >=| γ ∪Γ, ji,

1
2
,α i,α,β i,β >

  

€ 

ˆ E A (S)U(A,γ) = ±iU(A,γ1)τAU(A,γ 2)

  

€ 

E
∧

A

i

(x)U(A,γ) = i δ
δAi

A (x)
U(A,γ) = dsγ i(s)δ 3(x,γ(s))[U(A,γ1)τAU(A,γ 2)]

γ

∫



Geometric operators on Κ0 

The area operator 
C. Rovelli, L. Smolin Nucl. Phys. B442, 593 (1995). 

Neither U(A,γ) nor EA(S) are gauge invariant operators. If γ is a closed loop then  
the Tr(U(A,γ)) is gauge invariant and f(A, s) can be similarly constructed. 

Neither EA nor EA EA are gauge invariant. The fields on S have different gauge  
transformations at each point on S. Geometric operators like the area operator 
will be gauge invariant. The area of a two dimensional surface can be written, 
classically, as, 

€ 

A[S] = d2σ
S
∫ det(gij ),                i, j =1,2

        = d2σ
S
∫ det gab

∂xa

∂σ i
∂xb

∂σ j

 

 
 

 

 
 ,

        = d2σ
S
∫ det ea

AebA
∂xa

∂σ i
∂xb

∂σ j

 

 
 

 

 
 ,

        =
8πγG

c 3 d2σ
S
∫ na

˜ E a A nb
˜ E bA



One has that, 

  

€ 

ˆ A (S)ΨS [A] =
8πGγ

c 3 ji( ji +1)
i
∑ ΨS[A]

The area operator has a discrete spectrum 
that depends on the Barbero-Immirzi parameter. 

If the spin network has nodes on the surface, 

Outgoing              Incoming                   Tangent 

One can show that the area operators do not commute. The commutator has  
non-trivial action on vertices of valence 4 or higher. 



The volume operator 

€ 

V (R) = d3x | det(g) |
R
∫ = (8πGγ)

3
2 d3x 1

3!
|ηabcε

ABC ˜ E a A ˜ E b B ˜ E cC |
R
∫

The quantum operator associated with V is defined by considering a partition of the 
region R in small volumes ε3. In each elementary volume the integral may be  
rewritten in terms of field operators associated to the faces of the “cubical”  
elementary volume. Non-vanishing contributions only arise in the vertices of the 
spin networks. 

  

€ 

ˆ V (R) | s >= ˆ V (R) |Γ, ji,i1…iN >

              =
8π γG

c 3

 

 
 

 

 
 

3 / 2

Min
n⊂s∩R
∑

i'n |Γ, ji,…i'n … >

The recoupling matrices M are non-vanishing for non planar vertices of valence 
higher or equal than 4 when acting on Κ0. On K the first non-vanishing contribution 
is for 3 valent vertices.   
A. Ashtekar, J. Lewandowski, Adv. Theor. Math.  Phys 1,388 (1998). 



Fig 6.8 of Rovelli 
The graph of an abstract spin network 
and the ensemble of “chunks of space”, 
or quanta of volume, it represents. 
Chunks are adjacent when the  
corresponding nodes are linked. Each link 
cuts one elementary surface separating 
two chunks. 

Weaves. It is possible to define families of spin nets such that for l >> lPlanck reproduce 
the classical space with metric gab. 

There is an absolute limit to the approximation. Additional refinements of the spin 
network do not improve the approximation. If one adds lines or nodes, V and A 
would increase and the error is always lp/l. 



The issue of the dynamics 

The physical state space 

In the Euclidean case, choosing γ=±1 makes the factor (γ2-σ) vanish,  with σ the  
determinant of the flat metric in Cartesian coordinates.  

In spite of its very complicated non-polynomial appearance, Thiemann was able 
to write this constraint in a way that makes the theory amenable to a quantum 
treatment. 

The non-polynomiality has two origins: 1) The Lorentzian term H’, 2) the square 
root of the determinant of q that appears in the denominator. This factor is crucial 
for the constraint algebra to be consistent. If one ignores the factor there does not 
exist a regularization of the operator that is background independent of the structure 
function that appears on the right hand side of algebra of two Hamiltonians.  
Furthermore, eliminating the factor produces a constraint that is a double density, 
and we do not have at hand any natural double density on a manifold. 



Thiemann starts from the following observation. Let us assume that the following 
quantities can be promoted to well defined operators on Kdiff. 

1) The total volume on Σ, 

2) The integrated trace of the extrinsic curvature 

Starting from them one can define 

€ 

˜ E a A ˜ E b BεABC

| det(q) |
= 2ηabc δV

δ ˜ E cC
= 2ηabc{Ac

C ,V}

Ka
A =

δK
δ ˜ E a A

= {Ac
C ,K}.

Which in turn allows to write, 

€ 

HE =
1

| det(q) |
Tr [ ˜ E a, ˜ E b ]Fab( ) = 2ηabcTr Aa ,V{ }Fbc( ),

H '= 2
| det(q) |

Tr Ka ,Kb[ ][ ˜ E a , ˜ E b ]( ) = 2ηabcTr Ka ,Kb[ ] Ac,V{ }( )

= 8ηabcTr[{Aa ,K}{Ab,K} Ac,V{ }]



To promote those expressions to quantum operators, the Poisson brackets get 
promoted to commutators and as we shall see, all the quantities involved have  
well defined  operators. We have already discussed the volume V.  
To quantize K one begins by noticing that, 

€ 

K = −{V , d3x∫ HE},

where we have used that the integrated densitized trace of the extrinsic curvature 
is the “time derivative of the volume”. 

We need to regularize HE. Recall that neither A nor F are well defined in K. We 
need to represent them using holonomies. To do that we define a triangulation of 
the spatial manifold Σ. 

Let us first consider the regularized constraint at a 
classical level. We start by considering a tetrahedral 
decomposition of Σ. Take v(Δ) to be a vertex of the 
tetrahedron Δ and si(Δ) the links that converge in v. 

Then, 

This is gauge invariant and therefore well defined in K0. 



One can then write the Hamiltonian as a sum over the triangulation of the elementary 
contribution we just discussed, 

€ 

HE = limΔ→0 H Δ
E[N] =

Δ∈T
∑ limΔ→0 NvH

v
E

Δ∈T
∑

Quantization 

One is interested in computing  

To do it, it is good to consider an adapted triangulation such that some of its 
vertices coincide with the vertices of the spin network and some of its links  
coincide with the links of the spin network. 

  

€ 

HE
Δ[v] | s >= −

i
 v(s)
∑ Nv

v(Δ )= v
∑ ε ijkTr ˆ h α ij

(Δ) ˆ h sk
(Δ) ˆ h −1

sk (Δ), ˆ V [ ]( ) | s >

Due to the properties of the volume 
operator the Hamiltonian constraint 
acts non-trivially at intersections of 
valence 3 or higher. 



Action of H 

It introduces a new “extraordinary” link in the  
fundamental representation. n’ and n” are  
“extraordinary” vertices. The volume combines 
spin networks with different l’, l”. These links are 
added at all vertices in all possible ways. 

€ 

HE | s >= Nn Mnl ' l"
l ',l"
∑

n
∑ | Snl ' l"n'n" >

The action of H’ can be obtained from the definition of HE. 
The limit Δ->0 in Kdiff only implies that the additional links are adjacent to 
the vertex. 

We have therefore obtained a well defined finite Hamiltonian constraint. 
T. Thiemann, Class. Quan. Grav. 15, 839 (1998). 



Open problems: 
1) Constraint algebra 
The Hamiltonian constraint satisfies the correct algebra on Kdiff. Recall that 
classically, 

So as operators o Kdiff one should have that, 

€ 

ˆ H (N), ˆ H (M)[ ] = 0

One can easily verify that this relation is indeed verified. However, on Kdiff the 
rich structure of the right hand side of the equation is lost. 

If one had a definition of the Hamiltonian constraint on K0, then one could  
verify the full algebra. However, the diffeomorphism constraint is not well 
defined in K0. 



2) Uniqueness 

H is not unique. There exist ambiguities in, 
a) The representation of the additional edge ½->j 
b) Other forms of adding the small loop. 

3) Ultralocality 

H acts only on the original vertices of the spin network, not on the ones added 
by H since the latter are exceptional. 

4) Excessive solutions 

States that approximate any classical geometry  
are solutions. In fact any geometry may be  
approximated by spin nets without extraordinary  
links and vertices |si> 



Coupling to matter: 

Matter is naturally incorporated in the spin network framework. One needs to extend 
the kinematical space, 

The key dynamical result is that Thiemann’s construction may be extended and 
the total Hamiltonian one constructs is a well defined operator on Kdiff encoding  
the entire dynamics of the standard model. 

The fact that the total Hamiltonian is finite, consistent and well defined is  
remarkable and is one of the central results of loop quantum gravity. 

Incomplete developments: 

Inner product on physical states? 

Classical limit? 
As we have seen, Thiemann’s 
proposal for the Hamiltonian 
has several open issues. 



Other approaches to the dynamics of loop quantum gravity: 

Spin foams: Reisenberger, Rovelli, Krasnov, Freidel, Pérez, many others. 

Spin foam models for quantum gravity. Alejandro Pérez  Jan 2003.  
80pp. Class.Quant.Grav.20:R43,2003. e-Print: gr-qc/0301113 

Master Constraint: Thiemann and collaborators. 

The Phoenix project: Master constraint program for loop quantum gravity. 
Thomas Thiemann. Class.Quant.Grav.23:2211-2248,2006.  gr-qc/0305080 

Uniform discretizations: RG, Pullin. 

Uniform discretizations: A New approach for the quantization  
of totally constrained systems. 
M. Campiglia, C Di Bartolo, R.G J.Pullin. Phys.Rev.D74:124012,2006.  
 gr-qc/0610023 



An application: Cosmology 

In addition to the conceptual difficulties we mentioned, one has all the intrinsic 
complications of a non-linear field theory when dealing with full quantum gravity 
in 3+1 dimensions. 

In order to simplify things one can study approximate models with high degree 
of symmetry. 

Cosmological models approximate space time at large scales by a homogeneous 
and isotropic space. 

If one quantizes the homogeneous, isotropic theory the problem simplifies quite 
a bit since one is left with a mechanical problem with a finite number of degrees  
of freedom.The Robertson-Walker metric:  



Einstein equations for such metric are known as the Friedmann equations: 

Equation of state: 
Dust: p=0, radiation p=ρ/3 
The conservation of energy leads: 

For quantum discussions it is good to introduce fields as matter sources, for 
instance a scalar field, 

€ 

Friedmann equation holds for :   ρ(a) =
Hφ

a3 .

For small values of a the kinetic term in the Hamiltonian dominates,  
which diverges for a=0, and leads to a singular solution (Big Bang). 



The traditional quantization of these equations does not eliminate the singularity. 

Starting from the Hamiltonian constraint,  

One can quantize, 

and one gets the Wheeler-DeWitt equation, which is defined up to factor orderings. 
One can take a as a time variable and describe the evolution in a. 
The energy is still unbounded and the singularity is not removed through the  
quantization, volume goes to zero and the energy density diverges. 



Loop quantum cosmology 

We consider Ashtekar variables with gauge and diffeomorphism symmetry 
fixed to take advantage of the symmetries, 

€ 

Aa
B =

1
2

k − γa
• 

 
 

 
 
 δa

B = cδa
B ,

˜ E a B = pδB
a ,                               | p |= a2 .



We will now proceed to quantize this Hamiltonian “in loop space”. 

In a homogeneous isotropic space one can divide space into cells and study 
the dynamics in one cell. By homogeneity, it will be the same as in any other 
cell. In the loop representation the fundamental variables are the holonomies 
hλ along the sides of the elementary cell and fluxes of the triad field E along 
the surfaces. 

We describe the gravitational part of the  
kinematical Hilbert space by  

Notice the sum and the Kronecker delta. One also has that, 

The derivative of hλ with respect to λ, and therefore c are not well defined as 
operators, just like the connection in loop quantum gravity. 



In order to write Thiemann’s Hamiltonian one needs to realize the volume  
 V=|p|3/2  as a quantum operator, which is straightforward in the |p> basis. 

€ 

ˆ H grav =
24i sg(p)

8πγ 3µ0
3lPlanck

2 sin(µ0c) sin µ0c
2

 

 
 

 

 
 ˆ V cos µ0c

2
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 ˆ V sin µ0c

2
 

 
 

 

 
 

 

 
 

 

 
 

Just like Thiemann’s Hamiltonian introduced finite holonomies to represent the 
curvature Fab

C. Here µ0 is finite and the limit µ0->0 does not exist. This is a  
manifestation of the discrete structure of space-time. The area operator has 
a discrete spectrum and µ0 is determined by the minimum area eigenvalue. 

In the |p> representation, H leads to a finite difference equation. Its solution 
approximates excellently the Wheeler-DeWitt equation far away from the  
Big Bang. However, in loop quantum gravity the dynamics differs at the  
Big Bang (and Big Crunch) and both are replaced by quantum bounces. 





Black hole thermodynamics 

In 1972 Hawking noted that the area of a black hole always grows and proved a 
theorem about it. Bekenstein suggested  that the area of a black hole may play 
a role as an entropy, estimating the entropy of a collapsed object and using the 
second law of thermodinamics, 

Here a is a dimensionless constant and we have set c=1. The sum of the  
entropy of the environment the black hole is in, plus SBH always grows. 

Initially the idea was received with skepticism. In thermodynamics one has that, 

And therefore black holes should have a temperature and emit radiation, something 
not observed in the classical theory. 

However, Hawking, studying quantum fields on the background of a black hole 
found that  



This opens several new questions: 

Do this results hold in quantum gravity? 

What is the statistical origin of S? 

The presence of ħ confirms that quantum gravity must play a role. 

We will see that loop quantum gravity leads to this result and does so for black holes 
of different type. 

Let us consider a black hole described approximately by a Schwarzschild metric. 
It will not be exactly spherical due to quantum fluctuations at the horizon. It will 
absorb matter and light.  

Σt 

The horizon at a given instant  t fluctuates, 
We consider the statistical ensemble of  
metrics with a given value of the energy or  
equivalently with a given area. 



All the information we have about a black hole is on its horizon, we can cannot 
get information about what happens behind the horizon through the  
fluctuations of the latter. 

Other types of systems trapped in a box S, one can know what happens in the 
interior and therefore increase the information and lower the entropy. This does  
not occur in black holes. 

We must therefore determine the ensemble of microstates gt. In statistical mechanics 
a microcanonical ensemble has states of a given energy E. In this case we are 
interested in the state of area A, proportional to M2. If there are N(A) states with 
area A,  

In order to determine N(A) we observe that classically such number is infinite but 
quantum mechanically it will correspond to the number of orthogonal states with 
area A. 

The number of different quantum configurations in the spin net basis will  
correspond to the number of possible spin nets with area A at the horizon.  



We need to take into account a) lines that cross the horizon, b) vertices lying on 
the surface and c) lines living on the surface. Here we consider the dominant 
contribution, more precise calculations have been done recently by Lewandowski. 

Let i=1,….,n the indices that identify the links of the spin 
network that cross the horizon and j1,….jn their valences. 

A line of valence j can be in 2j+1 states. The Hilbert space in the horizon will be, 

I present here a heuristic computation. For a more rigorous calculation see 
Quantum geometry and black hole entropy.  Phys. Rev. Lett. 1997 
A. Ashtekar, J.Baez, A.Corichi, K.Krasnov.  
The calculation was initially done estimating the number of states of area A 
dominated by j=1/2 (the case that corresponds more to the classical case, since 
it maximizes the lines crossing the horizon). Every j=1/2 contributes an area, 



This calculation was initially done for Schwarzschild black holes and was later 
extended to charged and Kerr black holes, deformed black holes and nonminimally 
coupled scalar field black holes. In all cases the same value of the Barbero-Immirzi 
parameter is needed to recover the Bekenstein-Hawking result. Unfortunately we  
do not know of another means of determining the value of the parameter to check 
for compatibility. 

More recent calculations for the parameter in order to get the Bekenstein Hawking 
result are Lewandowski and Domagala gr-qc/0407051, Meissner gr-qc/0407052 

Some have attempted to link these values with classical quasinormal modes, but 
the argument is not compelling enough. 



Potentially observable effects 
Some possible low energy effects of loop quantum gravity have been studied 
using rudimentary approaches to the semiclassical approximation. An example 
is the arrival time of gamma ray bursts  (RG, Pullin) 

If one studies the propagation of matter fields on weave states one is led to  
consider possible quantum gravitational effects  on the dispersion relations, 
which may lead to Lorentz violating terms, 

The calculation is subject to severe limitations: 
1) it is a kinematical calculation, the constraints are not enforced. 
2) The weave is not the best semiclassical state. 
3) In order to have first order corrections in E/EPlanck one has to assume that 
the weave violates parity. 

So the calculation is an illustration of a possible effect, not a prediction of the 
theory that can be used to validate it. But it is fascinating that one may have 
low energy effects of loop quantum gravity. 

In fact the first order effects have been ruled out using radioastronomy and gamma 
ray bursts. 

An important  conceptual open question is if LQG violates Lorentz invariance or not. 



Conclusions 

1)  We have a very satisfactory and robust description of the kinematics of  
canonical quantum gravity. 

2)  Important conceptual progress, for instance in the problem of time  
3)  It leads to a very satisfactory form of quantum cosmology 

We still do not have a complete understanding of significant aspects: 

1) The optimum way of discussing the dynamics. 
2) The recovery of general relativity in the semi-classical limit. 
3) A complete description of quantum field theory on a quantum space-time. 
4) Reliable predictions that can be tested experimentally. 


