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Abstract
We give a simple derivation and expansion of a recently proposed new 
relativistic interaction between the electron and the spin angular momentum of 
the electromagnetic field in quantum electrodynamics (QED). Our derivation 
is based on the work of Møller, who pointed out that, in special relativity, 
a particle with spin must always have a finite extension. After generalizing 
Møller’s classical result to include both rotation and quantum effects, we 
show that it leads to a new contribution to the energy, which is the special 
relativistic interaction term. In addition, we show that all relativistic terms 
involving spin terms arising from the Dirac equation may be obtained by this 
method.

Keywords: angular momentum of electromagnetic field, spin effects, Møller 
interaction

A new relativistic interaction term in quantum electrodynamics (QED), which, in particular, 
couples the spin angular momentum of light and the election spin, was initially proposed on 
the basis of symmetry arguments [1] and verified in a complex calculation involving the Dirac 
equation and the Foldy–Wouthuysen transformation [2]. In many ways, this is a surprising 
result, since it did not appear explicitly in the avalanche of work on QED following Dirac’s 
work. Moreover, since the orbital momentum properties of light are now of much interest, we 
are motivated to provide a simple derivation and physical explanation. In addition, we show 
how this result may be written in a revealing manner as an interaction between the magnetic 
moment of the electron and the magnetic moment of the electromagnetic field. In addition, we 
show that all such spin terms arising from the Dirac equation may be obtained by this method.

Our derivation is based on the work of Møller [3], who pointed out that, in special relativ-
ity, a particle with structure and spin S (its angular momentum vector in the rest system K(0)) 
must always have a finite extension and that there is a ‘… difference ∆r between the simul-
taneous positions of the center of mass in its own rest system K(0) and system K (obtained 
from K(0) by a Lorentz transformation with velocity v)…’. After generalizing Møller’s result 
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to include both rotation (see (6) below) and quantum effects (see (7) below), we derive what 
we call ‘hidden energy’, which is the new relativistic interaction term, in addition to the usual 
spin–orbit interaction term.

We refer to ∆r as a hidden position and it is given by [3]

∆ =
×

r
S v
mc

.
2� (1)

As we have previously shown [4], if we take the time derivative of ∆r, we obtain the hidden 
velocity ∆v. Next, we work to order c−2 (as in [1, 2]), so that we can neglect the very small 
second order terms, which arise in the relation between the hidden velocity and the hidden 
momentum, as well as in the time dependence of the spin, to obtain an expression for the hid-
den momentum

 
∆ =

×
=
×S a S F

c mc
p ,

2 2� (2)

where

= vmp ,� (3)

a is the acceleration, and F is the external force acting on the particle. The existence of hidden 
momentum is now a well-documented phenomenon in electromagnetism [5], but it also plays 
an important role in the general relativistic treatment of spinning particles [6, 7]. However, it 
should be emphasized that equation (2) is not unique in the sense that it depends on the coor-
dinate system chosen and, in the coordinate system used in the derivation of the Dirac equa-
tion [6, 7], ∆p is  −1/2 of the result given in (2). In essence, this is related to the fact that, in 
special relativity, spin is described by a second-rank tensor Sαβ  =  −Sβα or by an axial 4-vector 
Sμ which reduces to the 3-vector S when the particle velocity is zero.

Explicitly,

≡ ∈α αβστ
βσ τS S U

1

2
,� (4)

and

=∈αβ αβστ
σ τS S U .� (5)

The relation between Sαβ and Sμ is not unique [8] but depends on the choice of the so-called 
spin supplementary condition, which in turn depends on the coordinate system chosen. Popular 
choices are SαβUβ  =  0 and Sαβpβ  =  0, where Uβ and pβ are 4-velocity and 4-momentum vec-
tors. However, as is clear from [6], these choices are not suitable for treating an accelerating 
particle, and, instead, we introduced a new supplementary condition, given in (6) below, which 
we showed to be consistent with Dirac’s coordinate system. In addition, we showed that our 
new choice was the basis for explaining the difference in results obtained by Schiff [9] and by 
Barker and O’Connell [6]. In fact, Schiff’s choice corresponded to the ∆r given in (2) whereas 
Barker and O’Connell [7], using Dirac’s coordinate system, obtained  −∆r/2. The factor of 2 
provides an important clue when we recall the famous factor of 2 that arose from the Thomas 
precession (rotation) after he took into account the extra Lorentz transformation arising from 
acceleration. Since acceleration always plays a key role, the popular choices mentioned above 
refer to non-inertial frames of reference and, as we showed in [7], Dirac’s choice (essentially 
what Jackson [10] refers to as the non-rotating frame) actually corresponds to the choice of an 
inertial frame given by

+ =S S U2 0,i ij
j

4� (6)
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which incorporates the Thomas spin–orbit contribution [10]. On the other hand, Møller’s 
choice, SαβUβ  =  0, corresponds to the choice of the rest frame of the electron (a non-inertial 
frame) and thus the quantum generalization does not include the Thomas contribution.

Furthermore, the results of [6] were based on a potential derived from a one-graviton 
exchange between two Dirac particles, from which the classical spin precession results 
were obtained by letting ½ћσ  →  S. Thus, it is clear that, in the Dirac coordinate system, the 
quantum generalizations of equations (1) and (2) are

σ
∆ = −

×�
r

v
mc2 2

,
2� (7)

and

σ
∆ = −

×�
P

a
c2 2

,
2� (8)

where P is the canonical momentum, given by

= +P p Ae ,� (9)

and where A is the vector potential of the electromagnetic field.
Here, we wish to apply the above expressions to incorporate spin effects into the non-

relativistic quantum Hamiltonian for a point structureless particle, in a potential ( )  rV , with 
charge e, interacting with the electromagnetic field, given by [11]

  ( ) ( )= − +P A rH
m

e V
1

2
.2� (10)

We also use the Coulomb (radiation) gauge, which is a common choice [11]. Thus, introduc-
ing spin effects via the above equations implies that, to order −c 2,

  ( )∆ = − ⋅
∆
+ ⋅

∆
+∆A

P
P

P
rH e

m m
V .� (11)

 Thus,

  ( )∆ = − ⋅
∆
+ ⋅

∆
− ∆ ⋅ �A

P
P

P
r rH e

m m

V

r

d

d
.� (12)

Using (7), we see that

σ− ∆ ⋅ = ⋅ ×

= ⋅

��r r r v

S L

V

r mc r

V

r

m c r

V

r

d

d 4

1 d

d
1

2

1 d

d
,

2

2 2

( )     ( )

    ( )
�

(13)

where L is the angular momentum of the electron. There is a very familiar result [10, 11] for 
the spin–orbit interaction.

Next, turning to the first term in (12) and using (8), we obtain

/ ( )σ∆ ≡− ⋅ ∆ = ⋅ ×
�

A P A aH e m
e

mc4
.1 2� (14)
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Taking a  =  (eE/m), where E is the electric field (but noting that the external force may be 
generalized to include magnetic contributions) and rearranging the cross product, we obtain 
our basic result

( )σ∆ = ⋅ ×
�

E AH
e

m c4
.1

2

2 2
� (15)

The expectation value of ∆  H1  is the hidden energy. It will be recognized that this term is 
exactly the same as the HAME interaction term of Mondal et al, which all their many applica-
tions are based on. Further physical insight is obtained by recognizing that ( )×E A  is the spin 
angular momentum density of the electromagnetic field [12]. Thus, the corresponding magn
etic moment Mem is (e/2mc) ( )×E A , and recalling that the magnetic moment of the electron 
Me is ( �e /2mc) σ, we see that

∆ = ⋅M MH .1 em e� (16)

In summary, Møller’s special relativistic hidden position, extended to include rotation, leads 
to hidden momentum and hidden energy, whose quantum version leads to the usual spin–orbit 
term as well as a new expression for the interaction of the electron spin with the spin angular 
momentum of the electromagnetic field. Finally, using (8), we see that the second term in (11) 
may be written as

( )/σ∆ = − ⋅ ×�H mca P 42
2� (17)

a result obtained by Hehl and Ni [13] in a tour-de-force calculation necessitating the use of 
three successive Foldy–Wouthuysen transformations. In the particular case where a  =  eE/m, 
we obtain the well-known result [14]

( )/σ∆ = − ⋅ ×�H e m cE P 4 .2
2 2� (18)

In conclusion, we have shown that all relativistic terms involving spin terms arising from 
the Dirac equation may be obtained from a rotation and quantum generalization of Møller’s 
observation and, in particular, we have given an explicit expression for the electron interaction 
with the angular momentum of the electromagnetic field.
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