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Abstract. Quantum carpets—the spatio-temporal de Broglie density
profiles—woven by an atom or an electron in the near-field region of a diffraction
grating bring to light, in real time, the decoherence of each individual component
of the interference term of the Wigner function characteristic of superposition
states. The proposed experiments are feasible with present-day technology.
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1. Introduction

Decoherence [1] is an essential ingredient of quantum mechanics. Very often it is used to
explain the emergence of the classical world [2–5] from a microscopic level. However, even
macroscopic molecules [6–8] such as C60, C70, C60F48 or C44H30N4 and interacting atomic
Bose–Einstein condensates [9] display interference properties.

Although in experiments involving a cavity field [10–12], superconducting quantum
circuits [13], an ion stored in a Paul trap [14], C70 fullerenes [15] and a neutron in an
interferometer [16] one has observed certain features of the decoherence of Fock states or of
the superposition of two coherent states [17], the quest [18] to record the decay of the total
Wigner function [19] of such non-classical states remains an important issue in studies in
quantum mechanics. In the present work, we show that the space–time structures in the position
probability distribution of a de Broglie wave after a diffraction grating, i.e. quantum carpets [20],
allow us to observe the decay of each individual component of the Wigner function in real time.

Under appropriate conditions the quantum mechanical probability density of a non-
relativistic particle displays [20], when represented in space–time, characteristic valleys and
ridges as shown in figure 1. These striking patterns have led to the name quantum carpet.
Its design is most pronounced when the energy spectrum, determining the propagation of the
particle, produces a strong degeneracy of intermode traces [21], as is the case for the particle
caught in a box [22] or diffracted from an infinite periodic grating. The latter situation is closely
related to the Talbot effect [20, 22]. Moreover, some features, such as the full and fractional
revivals, also persist in the presence of small relativistic corrections [23] or even in a fully
relativistic case [24], described by the Dirac equation. The ridges and valleys do not follow
classical trajectories but the world lines created by interference. Consequently, the design of the
carpet is purely an interference effect and is, therefore, sensitive to decoherence.

We show that a quantum carpet in the presence of decoherence allows us to observe the
decay of each momentum component of the interference Wigner contribution. Our proposal
relies on three guiding principles: (i) a quantum carpet, which is the position probability density
P(x, t) to find the particle at the transverse position x at a distance z = vzt after a diffraction
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Figure 1. Quantum carpets in the absence of decoherence represented by the
position probability density P(x, t) of a beam of atoms or electrons after it has
been diffracted from a grating aligned along the x-axis. To enhance the pattern
visibility, the plot is in the logarithmic scale. Bright or dark colours represent
high or low probability densities as indicated by the thermometer located on
the right-hand side of the figure. Time translates into distance z = vzt from the
grating by the macroscopic velocity vz of the beam orthogonal to the x-axis. Here
we have chosen an initial Gaussian wave packet centred in x̄ = L/2, having an
average momentum p̄ = 10h̄/L and width 1x = 0.03L .

grating, is given by an incoherent sum of the Wigner functions at the grating [22], (ii) a
diffraction grating can create a superposition state and (iii) de Broglie waves based on atoms
and electrons provide a variety of mechanisms of decoherence [25].

We consider two types of carpets corresponding to two distinctly different mechanisms
of decoherence: a carpet woven by (i) a two-level atom that can spontaneously go to its ground
state and thereby receives a single random momentum kick, and (ii) an electron that passes close
to a metal plate and thereby gets damped by its image charge and undergoes Brownian motion.
In both cases the design of the carpet gets washed out as the distance to the grating increases.

Present-day technology even allows us to implement our proposal. Indeed, quantum carpets
for several types of de Broglie waves [26–31] and of light [32] have been observed. Moreover,
the influence of a single spontaneously emitted photon on the far-field interference pattern of
an atomic wave has been measured [33]. Likewise, the field of electron optics [34, 35] has
made remarkable progress and a double-slit experiment in the presence of a metal plate has
already been carried out [36] at the University of Tübingen. Hence, the proposed observation
of the space–time patterns in the probability density can serve as a flexible tool to monitor
decoherence in a variety of experimental settings and conditions. A deeper understanding of
decoherence not only is of interest to investigate the quantum to classical transition, but also has
practical implications for the development of reliable quantum technologies.

This paper is organized as follows. In section 2 we connect the design of a quantum carpet
to the individual components of the initial Wigner function. We then, in section 3, consider two
different mechanisms of decoherence and study their effect on the space–time structures of the
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probability density. Finally, we summarize and discuss our results in section 4. For technical
details of the derivation of the Wigner function produced by a periodic array of wave functions,
see the appendix.

2. Quantum carpets woven by Wigner functions

We start our discussion by connecting the design of a carpet to the individual components
of the initial Wigner function. For this purpose, we study the diffraction of a non-relativistic
quantum mechanical particle from a grating and emphasize that many such experiments have
been performed with atoms [26–28], molecules [8], electrons [29–31, 36], neutrons [16] or
light [32].

2.1. Carpet represented as a superposition of Wigner function components

Here we express the probability density in space–time forming the quantum carpet as an infinite
superposition of Wigner functions corresponding to an array of Schrödinger cat states. This state
corresponds to the initial state. The time dependence enters as a displacement of the original
Wigner function along straight lines in space–time.

A mechanical or optical grating of period 2L produces a periodic array

ψ(x; t = 0)≡

∞∑
l=−∞

φ(x − 2 l L) (1)

of wave functions. Here x denotes the coordinate along the grating and φ = φ(x) is the wave
packet created by a single slit.

When we substitute this wave function into the definition [19]

W (x, p; t)≡
1

2π h̄

∫
∞

−∞

dξ ψ

(
x +

1

2
ξ, t

)
ψ∗

(
x −

1

2
ξ, t

)
e−ipξ/h̄ (2)

of the Wigner function, we find in view of the results obtained in the appendix that the Wigner
function

Wψ(x, p; t = 0)=
π h̄

2L

∑
n,l

(−1)nlδ(p − pn)Wφ(x − l L , pn) (3)

of such an array with period 2L consists of a periodic array of Wigner functions

Wφ(x, p)≡
1

2π h̄

∫
∞

−∞

dξ φ

(
x +

1

2
ξ

)
φ∗

(
x −

1

2
ξ

)
e−ipξ/h̄ (4)

separated by L .
Due to the spatial periodicity, the momentum

pn ≡ n
π h̄

2L
(5)

is discrete. We also note, in (3), the presence of the alternating weight factor (−1)n·l for the
individual contributions of the Wigner function.
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After the grating the particle evolves freely as expressed by the Liouville equation [19]

L̂Wψ(x, p; t)= 0, (6)

where

L̂≡
∂

∂t
+

p

M

∂

∂x
(7)

denotes the Liouville operator of free motion for a particle of mass M . It is easy to verify that
the expression

Wψ(x, p; t)= Wψ

(
x −

p

M
t, p; t = 0

)
(8)

in terms of the initial Wigner function is the solution of the Liouville equation (6).
With the help of expression (3), we find that

Wψ(x, p; t)=
π h̄

2L

∑
n,l

(−1)nlδ(p − pn)Wφ

[
χn,l(x, t), pn

]
(9)

with the straight space–time trajectories

χn,l(x, t)≡ x −
pn

M
t − l L . (10)

The position distribution P(x, t) at a distance z ≡ vzt from the grating forms the carpet. Here vz

is the velocity component orthogonal to the grating. Since definition (2) of the Wigner function
implies the identity

P(x, t)=

∫
∞

−∞

dp Wψ(x, p; t), (11)

we find P(x, t) from (9) by integration over p, which yields

P(x, t)=
π h̄

2L

∑
n,l

(−1)nl Wφ

[
χn,l(x, t), pn

]
. (12)

Hence, the cut of the Wigner distribution along the x-axis for a fixed momentum pn moves
along the straight space–time trajectory χn,l with a fixed speed determined by pn. Thus as time
increases, the individual cuts of the Wigner distribution at neighbouring momenta separate.
We can distinguish them when the size of the Wigner structure is smaller than the separation
between two of them. The fastest separation occurs for almost vertical space–time trajectories,
that is, for small momenta contained in the Wigner function of the original state. Small momenta
are usually a characteristic feature of superposition states.

A consequence of momentum quantization is the periodic revival of the probability density
P(x, t). Indeed, there exists a revival time T1 such that P(x, t + T1)= P(x, t). This rephasing
takes place when all components of the Wigner functions Wφ[χn,l(x, t), pn] have travelled a
transverse distance, which is an integer multiple of the period 2L of the grating. Therefore, the
revival time is set by the smallest momentum component p1 ≡ π h̄/(2L), that is, by

T1 ≡
2L

p1/M
=

4L2 M

π h̄
. (13)
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2.2. Schrödinger cats

Next we recall [17] the Wigner function corresponding to the anti-symmetric superposition

φ(x)≡ ϕ(x)−ϕ(−x), (14)

built from the wave packet ϕ = ϕ(x). Indeed, when we substitute this superposition into
definition (2) of the Wigner function we obtain, owing to the bilinearity of W in φ, the
expression

Wφ(x, p)= Wϕ(x, p)+ Wϕ(−x,−p)+ Wint(x, p), (15)

where

Wϕ(x, p)≡
1

2π h̄

∫
∞

−∞

dξ ϕ

(
x +

1

2
ξ

)
ϕ∗

(
x −

1

2
ξ

)
e−ipξ/h̄ (16)

represents the Wigner function of the basis packet, and the interference term Wint is given by

Wint(x, p)≡ −
1

2π h̄

∫
∞

−∞

dξ

[
ϕ

(
−

(
x +

1

2
ξ

))
ϕ∗

(
x −

1

2
ξ

)
+ ϕ

(
x +

1

2
ξ

)
ϕ∗

(
−

(
x −

1

2
ξ

))]
e−ipξ/h̄. (17)

Hence, the Wigner function of the superposition state (14) is the sum not only of the
Wigner functions of the basis packet and its phase space inversion, that is, of Wϕ(x, p) and
Wϕ(−x,−p), but also contains the term Wint. It is this interference term which is extremely
sensitive to decoherence.

The elementary example of a Gaussian wave function

ϕ(x)≡
1

π 1/4

1
√
1x

exp

[
−

1

2

(
x − x̄

1x

)2
]

exp

[
i p̄(x − x̄)

h̄

]
(18)

yields the Gaussian Wigner distribution

Wϕ(x, p)≡
1

π h̄
exp

[
−

(
x − x̄

1x

)2
]

exp

[
−

(
p − p̄

1p

)2
]
, (19)

centred around x̄ and momentum p̄. Here the widths 1x and 1p ≡ h̄/1x are measures of the
extension of the quantum state in phase space indicating when the Gaussian has decayed to 1/e.

In contrast, the interference term

Wint(x, p)= −
2

π h̄
cos

[
2

h̄
( p̄x − px̄)

]
e−(x/1x)2 e−(p/1p)2 (20)

is always located at the origin of phase space independent of the initial position x̄ and
momentum p̄. Moreover, it assumes negative values whereas Wϕ is everywhere positive.

2.3. Quantum carpet for a Schrödinger cat

Indeed, for the example of the superposition state φ with a Gaussian wave packet ϕ of a
macroscopic average momentum p̄ � p1, we find a clear separation into momenta around p̄
giving rise to rather flat trajectories in space–time and small momenta creating steep world lines.
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The latter result from the interference term Wint. Hence, Wint translates itself into the design of
the carpet.

But how to create a superposition state such as φ from a grating? Many possibilities offer
themselves. In the case of atoms [19], we can use an optical grating which automatically creates
the desired superposition. In the case of a mechanical grating [21], we can send two de Broglie
waves under an appropriate angle onto the grating. In figure 1 we show a quantum carpet woven
by a particle prepared in the superposition state defined by (14) and (18). Due to the parity of
the initial wave function, it suffices to study the probability density in the space region from
0 to L and up to the revival time Trev = T1/2.

3. Quantum carpets in the presence of decoherence

We now derive expressions for quantum carpets in the presence of decoherence. Here we
consider two quantum systems with different mechanisms of decoherence: (i) a two-level atom
undergoing spontaneous emission and (ii) an electron moving over a metal surface creating
image charges.

3.1. Decoherence due to spontaneous emission

Our discussion starts with a two-level atom moving under the influence of spontaneous
emission. The Wigner functions We and Wg corresponding, respectively, to atoms in the excited
and ground states satisfy the generalized optical Bloch equations, which describe the coupled
dynamics of internal and external atomic degrees of freedom [37]

L̂We(x, p; t)= −γWe(x, p; t) (21)

and

L̂Wg(x, p; t)= γ

∫ 1

−1
dε fs(ε)We(x, p + εh̄k; t), (22)

where γ is the rate of spontaneous emission and L̂ denotes the Liouville operator of free motion
defined by (7). The term in (21) proportional to γ describes the relaxation due to spontaneous
emission. Moreover, the term at the right-hand side of (22) describes the transfer of population
from the excited to the ground state by spontaneous emission. The distribution fs = fs(ε) with

∫ 1

−1
dε fs(ε)= 1 (23)

reflects the momentum component along the x-axis.
When the atoms exit the grating at time t = 0 in the excited state, the solutions of these

equations read

We(x, p; t)= e−γ t Wψ

(
x −

p

M
t, p; t = 0

)
(24)

and

Wg(x, p; t)=

∫ γ t

0
dτ e−τ

∫ 1

−1
dε fs(ε)Wψ

(
x −

p

M
t − εδxsτ, p + εh̄k; t = 0

)
(25)
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with the displacement

δxs ≡
h̄k

M

1

γ
(26)

in position during the decay time 1/γ due to the recoil of the atom giving it a velocity h̄k/M .
A comparison between expressions (24) and (8) for the Wigner functions We(x, p; t) and

W (x, p; t) in the excited state and the standard one shows that the influence of decoherence is
just a multiplication of W by the decay factor exp(−γ t). As a result, we find the quantum carpet

P (s)
e (x, t)= e−γ t P(x, t) (27)

formed by the atoms in the excited state to be the original quantum carpet, (12), in the absence
of decoherence. However, its intensity decays as a function of time, that is, separation from the
grating.

Next we turn to the carpet woven by the ground state atoms. For this purpose, we substitute
the initial Wigner function (3) into (25) and obtain the formula

Wg(x, p; t)=
π h̄

2L

∑
n,l

(−1)nl

∫ γ t

0
dτ e−τ

∫ 1

−1
dε fs(ε)δ(p + εh̄k − pn)

×Wφ

(
x −

p

M
t − l L − εδxsτ, p + εh̄k

)
, (28)

which after integration over momentum with the help of the delta function yields the expression

P (s)
g (x, t)=

π h̄

2L

∑
n,l

(−1)nl W
(s)
φ

[
χn,l(x, t), pn; t

]
. (29)

Hence, while the intensity of the carpet formed by the excited atoms fades away, the carpet
formed by the atoms in the ground state builds up in intensity. However, we now have to average
the original Wigner function Wφ over the displacement δxs due to the spontaneously emitted
photon, that is,

W
(s)
φ (x, p; t)≡ e−γ t

∫ γ t

0
dτ eτ

∫ 1

−1
dε fs(ε)Wφ(x + εδxsτ, p). (30)

The averaged Wigner function W
(s)
φ depends explicitly on time. In particular, after a specific

time the characteristic structures of the Wigner function are averaged out.
In figure 2 we illustrate these features by showing the quantum carpets for a beam of

two-level atoms, initially prepared in the excited state. The left column displays the same ideal
quantum carpet in the absence of decoherence (γ = 0), which we use as a benchmark and a
guide to the eye. In the other columns, we gradually increase the rate of spontaneous emission
from γ = 1 (centre) to γ = 5 (right). In all our numerical calculations, we set h̄ = 1, L = 1
and M = 1. Moreover, we choose the photon momentum h̄k = 1 and use a constant distribution
fs = 1/2.

In the top and bottom rows, we show the carpets corresponding to the excited and ground
states, respectively. We clearly observe the exponential damping of the probability density P (s)

e
to find the atom in the excited state (top sequence) indicated by (27). Indeed, the design of the
quantum carpet remains identical to the case without decoherence (left), but the contrast in the
space–time structures becomes fainter as the atom moves away from the grating.
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Figure 2. Decoherence of an atomic quantum carpet. Position probability density
P(x, t) of a beam of atoms after it has been diffracted from a grating aligned
along the x-axis. To enhance the pattern visibility, the plots are in the logarithmic
scale. Bright or dark colours represent high or low probability densities as
indicated by the thermometer located on the right-hand side of the left figure.
Time translates into distance z = vzt from the grating by the macroscopic
velocity vz of the beam orthogonal to the x-axis. The left column displays
the ideal quantum carpet in the absence of decoherence (γ = 0). This plot
provides us with a benchmark against which we compare the quantum carpets
for increasing values of the damping rate: γ = 1 (centre) and γ = 5 (right).
Top: probability density P (s)

e (x, t) to find the atom in the excited state given
by (27). Bottom: probability density P (s)

g (x, t) to find the atom in the ground
state determined by (29) and (30). Here we have chosen an initial Gaussian
wave packet centred in x̄ = L/2, having an average momentum p̄ = 10h̄/L and
a width 1x = 0.03L .

At the same time, the probability P (s)
g of finding the atom in the ground state given by

(29) and (30) (bottom centre and right) builds up in intensity. However, the random recoil due
to spontaneous emission produces a less distinct pattern in the corresponding quantum carpets.
In this case, one can only appreciate the revival of the Gaussian wave packet at Trev/4, Trev/2,
3Trev/4 and Trev. The pattern of the quantum carpet appears blurred already after Trev/4.

In order to obtain the carpet for the excited state, we have directly used the expression for
P (s)

e , (27), and computed the series using a convergence tolerance of 10−4. We found that this
tolerance was sufficient to bring out the structures in the quantum carpet.

To plot P (s)
g , one could, in principle, use the analytical expression given by (29). However,

in practice, we found the convergence of the series to be too slow. Thus, we numerically evaluate

New Journal of Physics 15 (2013) 013052 (http://www.njp.org/)

http://www.njp.org/


10

the expression

P (s)
g (x, t)=

π h̄

2L

∫ γ t

0
dτ

∫ 1

−1
dεe−τ fs(ε)

∑
n,l

(−1)nl Wφ

(
x −

pn−εh̄k

M
t − l L−εδxsτ, pn

)
; (31)

that is, we interchange summations and integrations. We now first perform the summation over
n and l and then we average over ε and τ .

Here we use an adaptive Simpson quadrature rule to calculate the integral and an error
tolerance of 10−4 for the convergence of the series in the integrand. We found that this procedure
is sufficient to illustrate the effect of decoherence in the carpet structures.

3.2. Decoherence due to image charges

We now turn to the second model of decoherence: an electron propagates above a metal surface
as it creates the quantum carpet. The image charge in the metal [38] leads to a damped Brownian
motion of the electron described by the Langevin equation, i.e. a Heisenberg equation of motion
for the position operator x̂(t) of the particle in equilibrium with a linear passive heat bath. For
the case of a free particle interacting with an Ohmic bath, this equation takes on the well-known
form [39]

d2 x̂

dt2
+0

dx̂

dt
=

F̂(t)

M
. (32)

Here 0 and F̂ denote the damping constant and the Gaussian quantum force, respectively.
The explicit solution

x̂(t)= x̂(0)+
p̂(0)

M0

(
1 − e−0t

)
+ f̂ (t) (33)

of the Langevin equation, (32), with the force operator

f̂ (t)≡
1

M

∫ t

0
dt ′

∫ t ′

0
dt ′′ e−0(t ′−t ′′) F̂(t ′′) (34)

allows us to analyse the corresponding quantum carpet

P (B)(x, t)≡
〈
δ[x̂(t)− x]

〉
≡

1

2π

∫
∞

−∞

dk
〈
eikx̂(t)

〉
e−ikx (35)

in the presence of Brownian motion.
In order to evaluate the expectation value 〈exp[ikx̂(t)]〉 with the time-dependent position

operator x̂(t), we recall that the noise operator f̂ (t) at time t commutes with the operators x̂(0)
and p̂(0) of the electron at the initial time t = 0, when it starts interacting with its image charge.
Hence, the average exp[ikx̂(t)] factors into one over the electron and the other over the reservoir,
that is,

〈eikx̂(t)
〉 =

〈
exp

{
ik

[
x̂(0)+

(
1 − e−0t

) p̂(0)

M0

]}〉 〈
eik f̂ (t)

〉
. (36)

New Journal of Physics 15 (2013) 013052 (http://www.njp.org/)

http://www.njp.org/


11

We can perform the average of the symmetrically ordered operator pertaining to the electron
using the Wigner function, (3), and arrive at

〈eikx̂(t)
〉 =

π h̄

2L

∑
n,l

(−1)n·l

∫
dx(0)

∫
dp(0) exp

{
ik

[
x(0)+

(
1 − e−0t

) p(0)

M0

]}
× δ (p(0)− pn)Wφ(x(0)− l L , pn)

〈
eik f̂ (t)

〉
, (37)

which after integration over p(0) using the delta function and the new integration variable
y′

≡ x(0)+ (1 − e−0t)p(0)/(M0) reduces to

〈eikx̂(t)
〉 =

π h̄

2L

∑
n,l

(−1)n·l

∫
dy′ eiky′

Wφ

(
y′

−
(
1 − e−0t

) pn

M0
− l L , pn

) 〈
eik f̂ (t)

〉
. (38)

In the final step, we substitute this expression into the space–time distribution (35) for the carpet
and find that

P (B)(x, t)=
π h̄

2L

∑
n,l

(−1)nl

∫
dyWφ

(
χ
(B)
n,l (x, t)+ y, pn

) 1

2π

∫
dk eiky

〈
eik f̂ (t)

〉
, (39)

where we have introduced y ≡ y′
− x and the space–time trajectory

χ
(B)
n,l (x, t)≡ x −

pn

M0

(
1 − e−0t

)
− l L , (40)

which is curved due to the damping.
It is convenient to arrange the terms in the form

P (B)(x, t)=
π h̄

2L

∑
n,l

(−1)nl W
(B)
φ

[
χ
(B)
n,l (x, t), pn; t

]
(41)

with the averaged Wigner function

W
(B)
φ (x, p; t)≡

∫
∞

−∞

dy Wφ(x + y, p)K(y; t) (42)

and the time-dependent kernel

K(y; t)≡
1

2π

∫
∞

−∞

dk eiky
〈
eik f̂ (t)

〉
(43)

of Brownian motion.
Hence, the Brownian motion averages the initial Wigner function over a time-dependent

kernel K and the characteristic interference features of the Wigner function disappear.
The similarities and differences between the carpets of spontaneous emission and Brownian

motion stand out most clearly in the classical limit where K reduces to a Gaussian [5, 39]

K(y; t)≡
1

√
πδxB(t)

exp

[
−

(
y

δxB(t)

)2
]
, (44)

with a time-dependent width

[δxB(t)]
2
≡

D

0

[
20t − 2

(
1 − e−0t

)
−

(
1 − e−0t

)2
]

(45)

and D ≡ kbT/(M0). Here, kb and T denote Boltzmann’s constant and the temperature of the
metal surface, respectively.
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Figure 3. Decoherence of an electronic quantum carpet. Position probability
density P (B)(x, t) of a beam of electrons propagating on top of a metal surface
after it has been diffracted from a grating aligned along the x-axis. To enhance
the pattern visibility, the plots are in the logarithmic scale. Bright or dark colours
represent high or low probability densities, respectively, as indicated by the
thermometer located on the right-hand side of the left figure. Time translates into
distance z = vzt from the grating by the macroscopic velocity vz of the beam
orthogonal to the x-axis. Moving from left to right, we increase the damping
rate from 0 = 0 to 0 = 0.1 and 0.5. Here we have chosen an initial Gaussian
wave packet centred at x̄ = L/2, having an average momentum p̄ = 10h̄/L and
a width 1x = 0.03L . The other parameters are kb = 1 and T = 4.

At first glance, it might appear that this result is different from the corresponding results
in [4]. However, the work by Ford et al [4] is concerned with ‘entanglement at all times’, in
which case no divergences appear, even at zero temperature.

On the other hand, the work by Ford and O’Connell [5] is concerned with the solution of
the exact master equation (which was shown to be equivalent to the solution of the Langevin
equation for the initial value problem) and, in this case, it was shown that serious divergences
arise for low bath temperatures. However, as stressed in the abstract of this paper, worthwhile
results may be obtained for high temperatures but one must distinguish between two cases:
(a) a particle at zero (or low) temperature which is suddenly coupled to a bath at high
temperature and (b) a particle whose initial temperature is the same as the bath temperature
(the case where the initial temperature and the bath temperature are both high but different was
not analysed in detail but it follows closely the analysis for the previous case).

It is scenario (a) that is relevant in the present context, where we envisage an electron at a
relatively low temperature being brought into the confines of a metal surface at a much higher
temperature.

When we substitute the Gaussian kernel (44) into (42), we find the averaged Wigner
function

W
(B)
φ (x, p; t)=

∫
∞

−∞

dε fB(ε)Wφ (x + εδxB(t), p) (46)

due to the Brownian motion, with the Gaussian weight function

fB(ε)≡
1

√
π

exp
(
−ε2

)
.

In figure 3 we show the probability density P (B)(x, t) to find the electron at a transverse position
x and a distance vzt from the grating given by (41) and (46). The left column displays again the
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ideal quantum carpet in the absence of decoherence. We then increase the value of the damping
rate from 0 = 0.1 (middle) to 0 = 0.5 (right). As a result the Brownian motion quickly destroys
the space–time structures in P (B)(x, t) and after Trev/2 the design of the quantum carpet gets
completely washed out.

3.3. Discussion

We conclude by comparing the quantum carpets of an atom undergoing spontaneous emission
and an electron moving over a metal surface. According to (46) the averaged Wigner function

W
(B)
φ due to Brownian motion takes a form similar to the distribution W

(s)
φ defined in (30) and

originating from spontaneous emission. However, there are three major differences: (i) whereas

W
(s)
φ contains two averages—one over the decay time and one over the momentum change—

W
(B)
φ involves only the average over the displacement in position. (ii) The weight function fB

of the Brownian motion is always a Gaussian, whereas the corresponding distribution fs of
spontaneous emission depends on the type of the transition and ranges from being constant to a
trigonometric function. (iii) The displacement δxs of spontaneous emission in (30) is linear in
time for all times. In contrast, the displacement squared [δxB]2 of Brownian motion, (45), grows
for 0t � 1 as t3 but only turns into a linear dependence for 0t → ∞.

4. Summary and outlook

In conclusion, we have analysed the influence of decoherence on quantum carpets woven by
de Broglie waves. Spontaneous emission or Brownian motion, the sources of decoherence,
manifest themselves directly in the destruction of the design of the carpet. In this way, we
can observe in real time the decay of the interference terms of the Wigner function.

We emphasize that the proposed technique to bring out the influence of decoherence
is fundamentally different from the one used in the landmark experiments using photons in
a cavity [10–12], an ion stored in a trap [14] or the circuit QED analogues [13]. Whereas
they require the reconstruction [40, 41] of the Wigner function from measurements, such as
the occupation probabilities of atomic, phononic or photonic states, the present method of
using a quantum carpet measures directly the parts of the Wigner function most susceptible
to decoherence. Indeed, here we take advantage of three facts: (i) we can prepare a de Broglie
wave in an array of superposition states corresponding to a Schrödinger cat by diffracting it
from a grating, (ii) the free propagation of the matter wave after the grating forming the carpet
is classical when described by the Wigner function of the array of superposition states and (iii)
the design of the carpet is intimately connected to the shape of the interference terms in the
Wigner function.

Indeed, the structures of the individual world lines with their valleys and crests criss-
crossing the carpet are the Wigner function components of the interference term caused by the
superposition state at a given low momentum. Since we consider an infinitely long periodic
grating, these momenta are discrete and structure develops in the carpet only at discrete
inclinations with respect to the axes defining space–time, that is, in the near-field diffraction
pattern.

Decoherence attacks predominantly the interference terms of the Wigner function and
thereby fills the valleys. As a result, the design of the carpet gets washed out. However, it is
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only due to the discreteness of the momenta and the time evolution of a free particle after the
grating that these components separate in the form of a fan and we can observe the filling-up of
each component.

Our proposal to use the design of a quantum carpet as a tool to observe decoherence is
particularly suited for diffraction experiments such as the pioneering ones based on atoms [42],
large molecules [6–8, 15, 25], light [32] or electrons [36]. Although most of these articles have
analysed the apparent decoherence based on specific models, they have not made use of the
direct connection between the near-field diffraction pattern defining the carpet and the Wigner
function. However, it is in this way that we gain deeper insight into the nature of decoherence
and, in particular, in crossing the border between the microscopic and the macroscopic world.
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Appendix. The Wigner function corresponding to a periodic array of wave functions

In this appendix, we derive an expression for the Wigner function corresponding to an array

ψ(x)=

∞∑
l=−∞

φ(x − 2l L) (A.1)

of wave functions with period 2L . Here we make no assumptions on φ except that it is
integrable. Moreover, for simplicity in notation throughout this appendix the summation indices
run over all integers and the integrals have the limits −∞ and +∞.

When we substitute the wave function ψ given by (A.1) into definition (2) of the Wigner
function, we find that

Wψ(x, p)=
1

2π h̄

∑
k,l

∫
dξ φ

(
x − 2kL +

1

2
ξ

)
φ∗

(
x − 2l L −

1

2
ξ

)
e−ipξ/h̄. (A.2)

We first change the summation indices k and l to r and s, where k − l ≡ 2r and k + l ≡ 2s when
k − l and k + l are both even, and k − l ≡ 2r + 1 and k + l ≡ 2s + 1 when k − l and k + l are both
odd. After these transformations, (A.2) takes the form

Wψ(x, p)=
1

2π h̄
(Ie + Io), (A.3)

where

Ie ≡

∑
r,s

∫
dξ φ

(
x − 2(s + r)L +

1

2
ξ

)
φ∗

(
x − 2(s − r)L −

1

2
ξ

)
e−ipξ/h̄ (A.4)
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contains the even and

Io ≡

∑
r,s

∫
dξ φ

(
x − 2(s + r + 1)L +

1

2
ξ

)
φ∗

(
x − 2(s − r)L −

1

2
ξ

)
e−ipξ/h̄ (A.5)

the odd terms.
Next we apply the Poisson summation formula [43]

∞∑
m=−∞

gm =

∞∑
n=−∞

∫
∞

−∞

dµ g(µ) e2π inµ, (A.6)

where g(µ) is an extension of the function gm to the whole real axis, to the summation over r
and obtain the expressions

Ie =

∑
n,s

∫
dµ

∫
dξ φ

(
x − 2(s +µ)L +

1

2
ξ

)
φ∗

(
x − 2(s −µ)L −

1

2
ξ

)
e−ipξ/h̄ e2π iµn (A.7)

and

Io=

∑
n,s

∫
dµ

∫
dξ φ

(
x−2(s +µ+ 1)L +

1

2
ξ

)
φ∗

(
x−2(s −µ)L −

1

2
ξ

)
e−ipξ/h̄ e2π iµn. (A.8)

It is convenient to first slightly rewrite the arguments of φ and cast the integrals into the form

Ie=

∑
n,s

∫
dµ

∫
dξ φ

(
x−2sL +

1

2
(ξ−4µL)

)
φ∗

(
x−2sL−

1

2
(ξ−4µL)

)
e−ipξ/h̄ e2π iµn (A.9)

and

Io =

∑
n,s

∫
dµ

∫
dξ φ

(
x − (2s + 1)L +

1

2
(ξ − (4µ+ 2)L)

)

×φ∗

(
x − (2s + 1)L −

1

2
(ξ − (4µ+ 2)L)

)
e−ipξ/h̄e2π iµn (A.10)

and then introduce in Ie and Io the new integration variables y ≡ 4µL and (4µ+ 2)L ,
respectively, which yields

Ie =
1

4L

∑
n,s

∫
dy

∫
dξ φ

(
x − 2sL +

1

2
(ξ − y)

)

×φ∗

(
x − 2sL −

1

2
(ξ − y)

)
e−ipξ/h̄ exp

(
iπn

y

2L

)
(A.11)

and

Io =
1

4L

∑
n,s

(−1)n
∫

dy
∫

dξ φ

(
x − (2s + 1)L +

1

2
(ξ − y)

)

×φ∗

(
x − (2s + 1)L −

1

2
(ξ − y)

)
e−ipξ/h̄ exp

(
iπn

y

2L

)
. (A.12)

Here we have made use of the identity eiπn
= (−1)n.
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When we substitute (A.11) and (A.12) back into (A.3), we can combine both terms by
noting that (−1)n2s

= 1 and (−1)n(2s+1)
= (−1)n, which yields

Wψ(x, p)=
1

4L

1

2π h̄

∑
l,n

(−1)nl

∫
dy

∫
dξ̄ φ

(
x − l L +

1

2
ξ̄

)

×φ∗

(
x − l L −

1

2
ξ̄

)
e−ipξ̄ /h̄ exp

[
−i

(
p − n

π h̄

2L

)
y

h̄

]
, (A.13)

where we have introduced the new integration variable ξ̄ ≡ ξ − y.
Next we interchange the two integrations, recall definition (2) of the Wigner function and

arrive at

Wψ(x, p)=
1

4L

∑
l,n

(−1)nl Wφ(x − l L , p)
∫

dy e−i(p−pn)y/h̄, (A.14)

where we have defined the Wigner function

Wφ(x, p)≡
1

2π h̄

∫
dξ φ

(
x −

1

2
ξ

)
φ∗

(
x +

1

2
ξ

)
e−iπξ/h̄ (A.15)

of the wave function φ and the discrete momentum

pn ≡ n
π h̄

2L
(A.16)

introduced by the periodicity of the array.
With the help of the Fourier representation

1

2π h̄

∫
dy e−ipy/h̄

= δ(p) (A.17)

of the delta function, we obtain the result

Wψ(x, p)=
π h̄

2L

∑
l,n

(−1)nl Wφ(x − l L , p) δ(p − pn). (A.18)
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[11] Deléglise S, Dotsenko I, Sayrin C, Bernu J, Brune M, Raimond J M and Haroche S 2008 Nature 455 510
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