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REVIEW / SYNTHÈSE

Stochastic methods in atomic systems and
QED1

R.F. O’Connell

Abstract: We show that treating the black-body radiation field as a heat bath enables one to utilize powerful techniques
from the realm of stochastic physics (such as the fluctuation–dissipation theorem and the related radiation damping) to
treat problems that could not be treated rigorously by conventional methods. We illustrate our remarks by discussing
specifically the effect of temperature on atomic spectral lines, and the solution to the problem of runaway solutions in
the equation of motion of a radiating electron. We also present brief discussions relating to anomalous diffusion and
wave-packet spreading in a radiation field and the influence of quantum effects on the laws of thermodynamics.

PACS Nos.: 31.30.jg, 05.40.−a

Résumé : Nous montrons que traiter le champ de radiation du corps noir comme un thermostat nous permet d’utiliser de
puissantes techniques tirées de la physique stochastique (comme le théorème de fluctuation-dissipation et l’amortissement
radiatif associé) de façon à attaquer des problèmes qui ne peuvent être solutionnés rigoureusement par des méthodes
conventionnelles. Nous illustrons ces remarques en étudiant les effets de la température sur les lignes spectrales atomiques
et la solution divergente de l’équation de mouvement d’un électron émettant de la radiation. Nous discutons aussi
brièvement la diffusion anomale et l’étalement du paquet d’onde dans un champ de radiation, ainsi que l’influence des
effets quantiques sur les lois de la thermodynamique.

[Traduit par la Rédaction]

1. Introduction

Stochastic physics deals with fluctuations, principally ther-
mal and quantum. The subject is often loosely referred to as
“Brownian motion” since it was first seriously studied when
Brown, in 1828, observed the random motion of pollen grains
immersed in a fluid [1] at temperature T , in the absence of ex-
ternal forces. Einstein [2] used a diffusion equation and showed
that, for large times, the mean-square displacement is propor-
tional to T/γ , where T is the temperature and γ −1 is the colli-
sion rate, this being the first example of a fluctuation–dissipation
(FD) theorem. Soon after, Langevin [3] presented a simple phe-
nomenological approach, by writing down the first example of a
stochastic differential equation. In this equation, the total force
acting on a particle due to its environment is separated into two
parts: a frictional force and a fluctuation (random) force. These
terms are very different in nature: The fluctuation term is ba-
sically microscopic in nature and has a time scale determined
by the mean time between collisions whereas the time scale of
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the frictional force is proportional to the self-diffusion constant
and is much larger.

Later, another example of a fluctuation–dissipation theorem,
arose in the analysis of so-called Johnson–Nyquist noise [4, 5].
All of this work was classical in nature but in 1951, Callen and
Welton [6] presented a general quantum FD theorem. Such a
theorem is implicit in the pioneering work of Ford et al. [7]
who presented a microscopic quantum Langevin approach to
the case of an oscillator interacting with a heat bath composed
of an infinite number of coupled harmonic oscillators. This work
was later generalized by Ford and Kac [8] and by Ford et al. [9].
In the latter paper, the earlier work was generalized by writing
down what we referred to as the IO (independent oscillator)
model, describing the system of a quantum oscillator in an ar-
bitrary potential, at an arbitrary temperature T , interacting with
a heat bath of oscillators that were not interacting with each
other. By assigning arbitrary masses and frequencies to all the
oscillators, we obtained in essence a model that incorporated a
variety of existing models. In particular, by means of a series
of unitary transformations, we showed that the black-body ra-
diation field (BBR) could be treated as a special case of the IO
model. Concomitantly, because the Hamiltonian for an oscilla-
tor in a BBR field is universally accepted, it provided in essence
a “rosetta stone” in validating our choice of the more general
IO model rather than any of the various models that one finds in
the quantum optics literature. In particular, we showed [9] that
the well-known RWA (rotating-wave approximation) model of
a heat bath has a serious problem in that the corresponding
Hamiltonian does not have a lower bound.
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In this paper, we confine our attention, for the most part, to
the BBR bath. Thus, in Sect. 2, we discuss the fundamentals
underlying this subject and how they may be applied to the ex-
perimental results on the effect of temperature on spectral lines.
In Sect. 3, we show how the quantum Langevin equation devel-
oped in Sect. 2 forms the basis of a derivation of a solution to
the problem of runaway solutions. In Sect. 4, we consider some
miscellaneous applications. In particular, we show how mo-
tion in a BBR field gives rise to anomalous diffusion and wave
packet spreading, phenomena that are not apparently amenable
to conventional quantum electrodynamics (QED) techniques.
Also, we point out that thermodynamic concepts developed in
Sect. 2 form the basis of arguments against the various claims
that quantum affects could lead to violations of the fundamental
laws of thermodynamics. In Sect. 5, we present our conclusions.

2. QED shifts due to black-body radiation

Hollberg and Hall [10], using high-precision laser spectros-
copy, measured photon-heated Rb atoms to temperatures T as
high 1000 K and analyzed the photon spectra associated with
transitions from the high Rydberg 36s state to the tightly bound
5s state. They found an increase in photon energies proportional
to T 2, which they concluded represented energy shifts due to
temperature. Our conclusion [11–13] is that they have measured
free-energy shifts, as we will now argue.

There is general agreement that the main frequency shift
arises from T effects on the high Rydberg state since the ef-
fect of T on the tightly bound state is negligible. In essence,
we are dealing with a temperature-dependent Lamb shift. Con-
ventional atomic approaches to the problem have been carried
out [14, 15] leading to the conclusion that the dominant energy
shift ∼ T 2. The essence of the conventional calculation can be
simply obtained by an extension of Welton’s T = 0 calcula-
tion [16] for the Lamb shift, and it also serves as a transparent
foil to our approach. In this approach, the weakly bound Ryd-
berg electron is treated as a free electron that undergoes rapid
oscillations due to the electric field associated with the BBR.
The energy of oscillation W(ω) of an electron moving in one
dimension in an electric field E0e−iωt is

W(ω) = e2E2
0

4mω2 =
(

2πe2

3mω2

)(
3E2

0

8π

)
(1)

Identifying 3E2
0/8π with u(ω, T ), the energy energy density of

the electromagnetic field, one substitutes the Planck distribution

u(ω, T ) =
(
�ω3/π2c3

)
[exp(�ω/kT ) − 1] (2)

and integrates over all frequencies to obtain the mean energy.
In three dimensions this is to be multiplied by a factor of three
to give

U(T ) = 3
∫ ∞

0
dω W(ω) = πe2(kT )2

3�mc3 = πα

3mc2 (kT )2 (3)

This theoretical result appears to agree with experiment. How-
ever, as we have previously indicated [12], there are flaws with
this analysis since:

(a) missing from (3) is the equipartition term kT /2, which is
the leading and dominant term,

(b) radiation damping. The key point is that an atom interact-
ing with BBR at temperature T is a thermodynamic system.
Equilibrium is preserved by virtue of the fact that the BBR
not only gives energy to the atom but also receives en-
ergy from the atom because of dissipative effects [17, 18],
which is a beautiful example of the fluctuation–dissipation
at work (and analogous to Langevin’s treatment of Brow-
nian motion, when Langevin used the reverse process to
introduce a fluctuation force to counteract the dissipative
force exerted by the fluid). The conclusion is that thermo-
dynamic principles must be used in this atomic problem.
In particular, the work done in an isothermal transition (in
this case, the energy supplied by a photon driving a tran-
sition from the ground state to an excited state) is equal to
the change in free energy. Thus, it is our basic contention
that the Hollberg–Hall experiment is actually measuring
changes in free energy, as distinct from changes in energy.
Thus, we next turn to how such changes are calculated. Our
starting point is the Hamiltonian of the IO system [11]

H = p2

2m
+ V (x)

+
∑
j

(
p2

j

2mj

+ 1

2
mjω

2
j (qj − x)2

)
− xf (t) (4)

Here, m is the mass of the quantum particle while mj and ωj

refer to the mass and frequency of the heat-bath oscillator j . In
addition, x and p are the coordinate and momentum operators
for the quantum particle and qj and pj are the corresponding
quantities for the heat-bath oscillators. Also f (t) is a c-number
external force. The infinity of choices for the mj and ωj give
this model its great generality.

Use of the Heisenberg equations of motion leads to the QLE
[9, 11]

mẍ +
∫ t

−∞
dt ′µ

(
t − t ′

)
ẋ
(
t ′
)+ V ′(x) = F(t) + f (t) (5)

here V ′(x) = dV (x)/dx is the negative of the time-independent
external force and µ(t) is the so-called memory function. F(t)
is the random (fluctuation or noise) operator force with mean
〈F(t)〉 = 0.

Thus, the coupling with the heat bath is described by two
terms: an operator-valued random force F(t) with mean zero,
and a mean force characterized by a memory function µ(t).
Explicitly,

µ(t) =
∑
j

mjω
2
j cos

(
ωj t

)
θ(t) (6)

with θ(t) the Heaviside step function. Also

F(t) =
∑
j

mjω
2
j q

h
j (t) (7)

where qh(t) denotes the general solution of the homogeneous
equation for the heat-bath oscillators (corresponding to no in-
teraction). An exact solution can be obtained in the case of an
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oscillator potential

V (x) =
(

1

2

)
Kx2 =

(
1

2

)
mω2

0x
2

which is best displayed as

x̃(ω) = α(ω)
{
F̃ (ω) + f̃ (ω)

}
(8)

Here, the superposed tilde is used to denote the Fourier trans-
form and α(z) is the generalized susceptibility (response func-
tion), which is given by

α(z) = 1

−mz2 − izµ̃(z) + K
(9)

As already remarked, the BBR Hamiltonian is a special case of
the IO model, for which [11]

Re
[
µ̃
(
ω + i0+)] = 2e2ω2

3c3 f 2
k (10)

where the quantity fk is the electron form factor (Fourier trans-
form of the electron charge distribution). In other words, we
have allowed the electron to have structure.

The physically significant results for this model should not
depend upon details of the electron form factor, subject, of
course, to the condition that is be unity up to some large fre-
quency � and falls to zero thereafter. A convenient form that
satisfies this condition is

f 2
k = �2

ω2 + �2 (11)

Using this in (10), the Stieltjes inversion formula gives

µ̃(z) = 2s2�2

3c3

z

z + i�
(12)

In addition, we found that the fluctuation force is eE, where E
is the electric field operator for the free BBR field. The above
derivation started with the IO model and derived results for BBR
as a special case. Actually, in our first paper on this subject [11],
we dealt directly with the BBR Hamiltonian.

We emphasize again that our QLE given in (5) can be ap-
plied to many different heat baths of interest (the Ohmic, the
single relaxation time model, the BBR, and so on) but here we
concentrate on the BBR. It turns out that the BBR model is
unique in the sense that, as is well known, an essential aspect
of QED theory is the necessity for mass renormalization. Thus,
the m occurring in the QLE is actually the bare mass and the
renormalized (observed) mass M is given in terms of the bare
mass m by the relation [11]

M = m + 2e2�

3c3 = m + τe�M (13)

where

τe = 2e2

3Mc3 � 6 × 10−24s (14)

In the next section, we will return to these results to express the
QLE in terms of M and hence obtain the equation of motion

of a radiating electron. For now, we point out the importance
of α(ω) in that it leads us to a simple formula for F0(T ), the
free energy of the oscillator coupled to the radiation field, in the
form (11)

F0(T ) = 1

π

∫ ∞

0
dωf (ω, T )Im

{
d log α(ω + i0+

dω

}
(15)

where f (ω, T ) is the free energy of a single oscillator of fre-
quency ω, given by

f (ω, T ) = kT log

[
1 − exp

(
−�ω

kT

)]
(16)

This then led us to the conclusion [11] that the corresponding
free-energy-level shift is given by

�F0 = πα

9Mc2 (kT )2 (17)

which in three dimensions is to be multiplied by three. It follows
from thermodynamics [11] that the corresponding energy level
shift is

�U0 = −�F0 (18)

which is the negative of the result of what we regard as the
flawed calculation given in (3) above. We conclude that our
result given in (16) agrees with the results of the Hollberg–
Hall experiment and that the experiment actually measures free-
energy-level shifts.

3. Equation of motion of a radiating
electron

In a certain sense, the QLE given in (5) (in conjunction with
(10) and the knowledge that F (t) = eE, where E is the elective
field operator for the free BBR field) is the required equation of
motion. However, as already noted, for BBR, the m appearing
in (5) is the rest mass and thus we must use (13) to get the
corresponding result in terms of the observed mass M . This
leads to the result [18](m

�

) ...
x (t) + Mẍ(t) + V ′

eff(x) = Feff(t) + feff(t) (19)

where

feff(t) ≡ f (t) + �−1f (t) (20)

and similarly for the other “effective” quantities. We note that
(19) is an exact quantum mechanical result. In the classical limit
and with V (x) = 0, we obtain

M
(
�−1 − τe

) ...
x (t) + Mẍ(t) = f (t) + �−1f (t) (21)

We note the generality of this result in that we have not yet
specified the cutoff frequency �, which, of course, determines
the form factor. Also, the principle of causality (response due
to an external force cannot precede the force) implies that the
poles of the response function α(ω) must lie in the lower half
of the complex plane (noting that Imω > 0 [9, 11]) which, in
turn, implies m > 0. This leads to the conclusion [18] that

� < τ−1
e = 1.60 × 1023 s−1 (22)
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which rules out the possibility of a point electron [18] and ex-
plains why the Abraham–Lorentz equation is not an acceptable
equation for the radiating electron [19]. In essence, we are now
left with a family of solutions depending on the choice of �
or, concomitantly, the choice of electron structure. The sim-
plest solution emerges if we choose m = 0, which is equivalent
to choosing for � its largest permissible value of τ−1

e , corre-
sponding to choosing the closest approach to a point electron
consistent with causality. In that case, we obtain

Mẍ(t) = f (t) + τeḟ (t) (23)

This is rather striking result in that it is only a second-order
equation, it is correct to first order in τe and it is independent
of the cutoff frequency �. We note that the right-side of (23)
depends only on the specified external force and thus it is a
simple equation to solve. Finally, we note that other physically
reasoned choices for the form factor, as distinct from the choice
given in (12), simply lead to additional higher order terms in
(23), such as τ 2

e f̈ (t), as is shown explicitly in refs. 18 and 19.
Also, we remark that the relativistic generalization of (23) has
been obtained [20].

4. Other miscellaneous applications

The problem of Brownian motion is a special case of our
general QLE given in (5) and corresponds to taking f (t) = 0,
V (x) = 0, and µ(t − t ′) = 2mγδ(t − t ′), so that µ̃(ω) = mγ
whereγ is a constant. In addition, the classical high-temperature
limit is also assumed. The end result is that one obtains a so-
called normal (Einstein) diffusion with a diffusion constant
(kT /mγ ), which is necessarily a classical result. However, for
other choices of µ̃(ω), one obtains anomalous diffusion, of in-
terest in a variety of applications [21]. In the QED case, for
which the choice for µ̃(ω) given in (12) is relevant, interest-
ing quantum effects are manifest. In particular, we find that, at
T = 0, the result for the diffusion constant contains not only
quantum effects but also the bare mass appears in the result. In
addition, it was possible to calculate the spreading of a wave
packet in a BBR environment [21], a result not amenable to
calculation by conventional QED methods.

Next, we point out that our result for the free energy, F0, given
in (15), provides the basis for calculating quantum effects on
the laws of thermodynamics. In that context, we pointed out the
flaws in a variety of papers that claimed that quantum effects
could lead to violations of the second and third laws of thermo-
dynamics [22–24]. Moreover, we calculated explicitly quantum
corrections for various thermodynamic quantities (free energy,
energy, entropy, and specific heat) for a variety of heat bath
models [25].

5. Conclusions

Treating the BBR field as a heat bath enabled us to treat it in
the general context of stochastic physics, with its attendant pow-
erful results (such as the fluctuation–dissipation theorem). As a

result, we were able to calculate interesting physical phenom-
ena not amenable to solution by the conventional techniques of
atomic physics and QED.
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