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Abstract

We present an exact analysis of an oscillator (the detector) moving under a constant force with respect to zero-temperature vacuum and cot
to a one-dimensional scalar field. We show that this system does not radiate despite the fact that it thermalizes at the Unruh temperature
remark upon a differing opinion expressed regarding a system coupled to the electromagnetic field.

0 2005 Elsevier B.V. All rights reserved.

1. Introduction as to whether the radiation actually exists. Thus, we are mo-
tivated to present an exact calculation for the simple model
It is now generally accepted that, as originally pointed outof an oscillator (the detector) coupled to a scalar field (scalar
by Davies[1] and Unruh2], a system undergoing uniform ac- €lectrodynamics). In particular, we discard no terms and do not
celeration with respect to zero-temperature vacuum will coméntroduce the Weisskopf-Wigner approximation. Our approach
to equilibrium at an effective temperature that is proportional tds also unique in using the oscillator as a detector since it con-
the acceleration. This is the so-called Unruh temperature. Whaiderably simplifies the analysis in that we only need to treat
is more controversial is whether or not this implies that the systhe motion of one body instead of two. Secondly, making the
tem actually radiates. oscillator massive enough has the merit of ensuring that the
Grove[3] was the first to argue that, contrary to the then pre-back reaction due to the scalar field has no effect on the os-
vailing opinion, the system does not radiate. This conclusiorgillators dynamics. The methods we use are those of a quantum
was supported by Raine et §] who considered a uniformly Langevin approach which we have used for such problems as
accelerated oscillator moving under the action of a constarin oscillator coupled to the radiation figft?].
force and analyzed its effect on a detector (represented as an Since the subject has given rise to so much controversy, our
inertial harmonic oscillator). However, UnrJb] claims that aim will be to present the discussion in a detailed pedagogical
Raine et al.[4] discarded some terms in the autocorrelationmanner. We begin in Sectiod, where we give a simple de-
function of the field that actually contribute to the excitation scription of the real scalar field in one dimension. This field is
of the detector. Also, we note that R@4] uses a Weisskopf— isomorphic to the case of a stretched striig] and to make
Wigner (or white-noise) approximation. Belief in the reality of the discussion more intuitive we couch it in terms of the string.
the radiation may be gauged by recent suggestions as to how@ur starting point is the Lagrangian for the field, from which
might be measuref,7], but there is widespread controvetsy Wwe deduce that the equation of motion of the field and the zero-
temperature correlation are invariant under Lorentz transforma-
e — tion. In addition, we obtain explicit expressions for the correla-
Corresponding author. tion (which consists of a finite space- and time-dependent part
E-mail address: oconnell@phys.Isu.ediR.F. O'Connell). .
1 For example, Barut and Dowliri§] and Narozhny et a[9] agree with the plus a Con,Stam dlvergent. term) and the Commu_tator'
conclusions of Refg3,4], whereas ReznikL0] and Alsing and Milonn11] In Section3, we consider the case of a point mass mov-
disagree. ing under a constant force (hyperbolic motion). There we make

0375-9601/$ — see front mattét 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.physleta.2005.09.068


http://www.elsevier.com/locate/pla
mailto:oconnell@phys.lsu.edu
http://dx.doi.org/10.1016/j.physleta.2005.09.068

18 G.W. Ford, R.F. O’ Connell / Physics Letters A 350 (2006) 17-26

use of the convenient parametric representation of the motiowherec is the velocity of light. In that casehas the dimensions
sometimes called Rindler coordinatis3]. We find that the (mass length/2. The equation of motion of the string is the
zero-temperature correlation of the field evaluated at a spacé&sdomogeneous wave equation,

time point moving along the hyperbolic path is identical with 2,

the correlation evaluated at a point fixed in space, but with the_ — CZ& =0, (2.2)
field at the elevated Unruh temperature. 012 dy?
Next, we take into account the coupling of an oscillator towherec is the speed of waves in the string,
the field. In Sectior, we consider the coupling of a charged 1/2
=(t/0)™*“. (2.3)

oscillator to the field (scalar electrodynamics), such that the os-

cillator is at rest. This system is similar to the Lamb model of a  There is an energy conservation law,

particle attached to a stretched str[dg], in that it leads to the .

same Langevin equation. The solution of the Langevin equation— + 9 o, (2.4)

enables us to calculate the field and with that the flux of energ)f% dy

radiated by the oscillator at rest and in equilibrium with the fieldwith energy density

at temperatur@. We find the net energy flux at any point in the u(y. 1) [ u(y.0)\2

field is identically zero, the result of a detailed balance of a flux(y, 1) = ( Y > + _< Y ) (2.5)

of field energy emitted by the oscillator and a flux of field en- 2 dt 2 dy

ergy supplied to the oscillator. This is entirely what one shouldand energy flux

expect, since the mean energy of the oscillator in equilibrium

is constant. The point of this exercise is seen in the next twg (y, ) = _£<8u(y, D duly.1) + Ouly. 1) July. t)>. (2.6)

sections, where we find the for an oscillator in hyperbolic mo- 2\ o dy dy at

tion through a zero-temperature field the net flux vanishes in the Although for the string: is not necessarily the speed of light,

same way and for the same reasons as for an oscillator at resthe equation of motion is still invariant under the Lorentz trans-
In Section5, we extend the model discussed in the previougormation with velocityv:

section to consider an oscillator coupled to a moving point in , , 2

the field. In contrast to Raine et al., who introduced an inertial = ¥~V 1= y(t —vy/cf),

detector at a fixed point in space to test for the emission of radi’ (¥, ") = u(y, 1), (2.7)

ation from the moving oscillator, we simply treat the oscillator

as a detector and calculate the flux of field energy. In addition,

we do not ignore quantum effects in the expressions for the vay = (1 — v2/c2)

ious field correlation functions. As before, we obtain the Unruh

temperature. Then in Sectidhwe present an explicit calcu-

lation to show that for an oscillator in hyperbolic motion the

expectation value of the energy flux vanishes, just as for an 0y,

cillator at rest. With some concluding remarks in Secfipwe

present our conclusion that, whereas one can speak of an Unruh B

temperature, there is no corresponding radiation to be detecteY- ! Z\/ 2% La) (axe!®rmen "'“T rmen), (2.9)

In this context, we also analyze Unruh’s counterclgihand

argue that it is not valid. Finally, we emphasize that our discuswhere L is the length of the string and for periodic boundary

sion is restricted to the specific model of an oscillator coupledconditions the sum is over positive and negative integer multi-

to a one-dimensional scalar field. While this is the model usedles of 2r/L. The frequency is given by the dispersion relation,

by most authors, including the original work of David$ and

Unruh [2], other models (for example, the more realistic one = clkl. (2.10)

of a charged particle coupled to the electromagnetic fiedd) The string is quantized when we assume the canonical com-

can give different results. In our concluding remarks we discussutation relations for the dimensionless normal mode ampli-

conflicting opinions concerning the radiation with such modelstudes,

here

-2, (2.8)
Of course, for the real scalar field in one dimension this is
the usual Lorentz transformation.

The normal mode expansion of the displacement operator
ay be written

1= -
2. Real scalar field in one dimension (stretched string) [k, ap ] = 8k lak, aw]=0. (2.11)
When the string is in equilibrium at temperatd@rewe have
The Lagrangian for the stretched string is the expectation values
ou T [ ou\? + t hw
— (= , ,ay) = coth———=58y &,
/"y{2<ar> Z(ay) } @) faxag - agan) = cotho 7

whereo is the mass per unit length,is the tension and(y, t) (arag + apar) =0. (2.12)
is the string displacement. The integral is along the length of The correlation function for the string is

the string, which is stretched in the direction. For the real 1

scalar field it is customary to put = 1/47 andt = ¢2/4r, C(Ay, Ar) = E(“()’la ru(yz, 12) + u(yz, 2u(ys, t1)), (2.13)
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where It is a simple matter to show that the dispersion relaf210)
is preserved under this transformation and that
Ay =y1—y2, At=1n—12. (2.14) o
- o . . dk =dk/w. 2.22
In the limit of an infinite string L — oo) we evaluate this /@ . fo o _ ( )
using the above relations together with the prescription To obtain an explicit expression for the zero-temperature corre-

lation, putv = —Ay/Ar if |Ay/At| < c and v = —c2At/Ay

L T if |Ay/At| > c. Then, using the dispersion relati¢n10) we
>.- o7 / dk. (215 optain the expression
k —00
o
i h coSw|Ar? — Ay?/c?|1/2
The result is Co(Ay, Af) = P /da) £ — y</c?] )' (2.23)
C(Ay, At) 0
5 00 1 5 This integral is again divergent at long wavelength. Note that
= [ ak = coth—=2 cogkAy — wA?t). (2.16) the divergence comes from the behaviowat 0 and that we
dro @ 2T can write
—0o0
o
This integral is divergent at long wavelength=€ 0). This ) A cogt)
is to be expected since the Lagrangiari) is invariant under Co(Ay, A1) =€Ierg+ 2roC dt (2.24)
uniform displacement of the string. Nevertheless, we can still €(Ar2—Ay2/c2)1/2

obtain a useful result. To do so note that the derivative is a COMN4ere. the integral is logarithmic at= 0, so we see that
ditionally convergent integrdlL5], ’ ’

A 2
3C(Ay. A1) 5 Ood o o Co(Ay, At) = —4:66 log Ar? — c—z + const (2.25)
AV 4 / © 2kT where the constant is logarithmically divergenteas> 0, but
0 independent ofAr and Ay. Note that, since it depends only
x [sinw(At - ﬂ) + Sinw(At + ﬂ)} upon the invariant interval, this zero-temperature correlation is
¢ ¢ invariant under Lorentz transformation.
kT akT (At — Ay/c) Next, consider the commutator of the field, which can be
~ loc <C0th 7 written
kT (At 4+ Ay/c) ) o . B
+ coth p ) (2.17) (41, 1), u (2. 12)] = Zzh / " sin(kAy a)At). (2.26)
o w
From this we conclude that -

TkT (At — Ay/c) If |Ay/At| < ¢, we introduce a .Lorentz transfprmatlon corre-
p sponding taw = —Ay/At to obtain the expression

A .
C(Ay, At)=— Inoc (Iog sinh

. wkT(At+ A u(y, 1), u(y2, 12)
+ log sinh” ( h+ y/c)> +const (2.18) [ Y Ooy ]
—ih sinwAr (1 — Ay?/c?Ar?)1/?)
where the constant, while infinite, is independentfof and ~ ono dk ®
At. The case of the correlation at a fixed point on the string —00
Ay = 0) is of special interest, —ih
(Ay=0) P . SgNAt). (2.27)
h kT At 20¢
C(0,Ar) = R — logsinh + const (2.19) On the other hand, ifAy/At| > ¢, we introduce a Lorentz
o . L . . transformation corresponding to= —c?Ar/Ay to obtain the
This finite-temperature correlation function in Minkowski -
: i . expression
space—time will in the next section be compared to the zero-
temperature correlation function in Rindler coordinates in orde{u(yl, 1), u(y2, l‘z)]
to relate the constant acceleration to the Unruh temperature. oo ) N2 A ND/2
It is of interest to consider the zero-temperature correlation _ i / g SMkAY (A — "AL7/AYT ] (2.28)
function in Minkowski space, 2o 0
—0oQ
A F dk Therefore, we have the general result
Co(Ay, At) = - / — Co9kAy — wAt). (2.20) N A2
TTO w
oo (110 u(y2. )] = —sgnang ( A2 — =2, (2.29)
2icc c2

Introduce in the integral a Lorentz transformation of the wave _ _ - _
vector and frequency in which 9 is the Heaviside function. Note that the commutator

is invariant under proper Lorentz transformation, with an extra
K'=y(k— va)/cz), o =y (w—vk). (2.21)  sign change under time reversal.
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3. Hyperbolic motion extends in the direction. The oscillator interacts with the field
at the origin ¢ = 0). Thus, the system is very like the Lamb
A point massn moving under a constant for@ein relativity ~ model (in which the particle is attached to the center of an infi-

moves according to the equation of motion nite stretched strinfLl2,16])) and we shall see that it leads to the
d o same quantum Langevin equation. However, if the system is to
F, (3.1)  beinvariant under time reversal thgmrmust be odd under time

T (1 — v2/02\1/2 — _ ! . )

d (1—v?/c®Y reversal. In this sense, the fiehds different from the displace-
wherev = dy/dt is the velocity. The solution can most simply mentu of a string. Otherwise, the discussion of the previous
be written in parametric form, sections applies to the free fiejd

2 The equation of particle motion is that of a driven oscillator,

me coshFr t = " sinh i
Y= e = F e’ d? 3¢ (0
F mc F mc a’x _ $(0,1)

b0 <7 <00, 3.2) m T + Kx=20c Py (4.2)

where the parameteris the proper time, Ihe field equation of motion is the inhomogeneous wave equa-
ion,
2,.2\1/2

dr:(l—v /c ) dt. (3.3) 924 282¢ ., dx(t)a( : “3)

This solution is called hyperbolic motion. It is also called 972 ~ € ay2 “Tar OV ’

uniformly accelerated motion, since in the instantaneous resfe now eliminate the field variable between these two equa-

frame the acceleration is a constant equaton. The motion s Treating the right-hand side as known, the solution of the
corresponds to a point mass coming at —oo from y = +o0 field equation is

with velocity v = —c¢, decelerating with a constant foréeuntil

atr =0 it comes to rest at = mc?/F. The mass then acceler- b1 =" (v, 1) — x(t _ M) (4.4)

ates back toy = 400 atr = oo. ' ’ ’ '
For this hyperbolic motion, taking the two points to be on whereg”

. , 1) is the general solution of the homogeneous wave
the same world lin€3.2), we see that (v.1) g g

equation(2.2). Putting this solution in the particle equation of

2mc .  FA motion, we get the Langevin equation
V2 _ € Ginh me, (3.4) g gevineq
C

whereAt = 71 — 12. The zero-temperature correlation function
(2.25)for the scalar field in one dimension, when evaluated orfvhere

(A1 — Ay?/c?)
mx + ¢k + Kx = F(t), (4.5)

the world line, therefore takes the form r =20t (4.6)
Co(Ay, At) =— h log sinhFAT + const (3.5) Isthe friction constant and
2noc 2mc 36" (0. 1)
Therefore, for hyperbolic motion the correlation is a function F(t) = ;T’ 4.7)
of At alone. . . f
Recall that the proper time is the time as measured on a 'S & fluctuating force operator.

moving clock. Therefore, comparin@.5) and (2.19)we see The free field has the normal mode expansi29),
that the zero-temperature correlation evaluated along the hy- he . .
perbolic path is identical to the finite-temperature correlationy” (y, r) = Z (akel(ky—ww +aze—l("y—“”)), (4.8)
evaluated at a fixed point if we make the identification k (Lo

hF in which we combined2.3) and (4.6}0 write { = 20¢c. From
kT = e (3.6)  this we see that the fluctuating force can be expanded,
This is the Unruh temperatufg]. [ ‘ .

peratufe] F=Y", czw(—iake_’“” +ialel). (4.9)
k

4. Oscillator coupled to a one-dimensional scalar field
From this, using the canonical commutation ru{2sl1) and

We consider a coupling of the oscillator to the field throughthe expectation valug&.12) we can obtain the correlation and

the velocity. The Lagrangian is commutator for the fluctuating force. If we then form the limit
L — oo, using the prescriptiof2.15) and the dispersion rela-
L2 Lre2 ion (2.10
L=émv _EKX —20cvp(0,1) tion (2.10) we get
1
3\ 2 (96> Z(F(t)F F(t)F
+/dy o (99" oc® 3¢\ @.1) SIFUDF(i2) + Fi2) F(12))
2\ 0t 2 ay 00
This is sometimes called scalar electrodynamics. Note that = E/da) ;wcothh_w codw(n —12)],
the particle displacement is in thedirection, while the field T 2T

0
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2k ¥ ) the right-hand side is interpreted as the mean rate at which work
[F(r0). F(12)] = —l;/da)f‘os'”[w([l —12)]. (4.10)  is done on the oscillator by the fluctuating force. Of course,
0 in equilibrium the mean oscillator energy is constant and the

Using the expansiof¥.9) of the fluctuating force in the right- fémaining two terms must balance. Now, the direct te4ri6)

hand side of the Langevin equati¢h5), we see that the solu- is clearly the energy flux corresponding to the radiated energy,
tion has the expansion directed away from the oscillator with half to the left and half

to the right. Note, incidentally, that the radiated poweéi?)
[k , , i -
() = Z wa[—ioz(a))ake_mt n ia(a))*age“‘”], (4.11) is the analog of the well-known Larmor formula for the power
k

radiated by an oscillating electric dipole (proportional to the
square of the velocity rather than the square of the acceleration
wherea () is the oscillator susceptibility, since the coupling is to a scalar rather than a vector field).
) -1 We now evaluate these fluxes using the expan for
(@) = (-mo? —iwf +K) . (412)  the free field and the expansigd.11) f?)r the ozcilgt?}) dis-
It is of interest to form the position correlation for the oscil- placement. Consider firgfio(y, 7)), the current in the absence
lator. Using the expectation valuéa12)and forming the limit  of the oscillator. This, of course, must vanish on very general

L — oo, we find grounds. In this case we see that when we insert the expansion
1 for the free field the result is a sum oveof an odd function of
E(x(tl)x(lz) + x(12)x(11)) k, which vanishes. Next, consider the direct fli4x16) Using

the expansioii4.11)and the expectation valu€®.12) we find
after a little rearrangement

o0
h h
= —/dwlm{a(w)} coth2k—a; codw(r1 — )], (4.13)
T
. Yy hic 3.2 2 hw
- - 0 <Jd|r(y,t)>— |y—|z Za) é‘ ’O{(a))’ Cothm. (419)
in which we have used the fact that{{anw)} = ¢ w|a(w)|%. k
Consider now the flux of field energy radiated by the oscil-If we use the prescriptio(2.15)to form the limit L — oo, we

lator as measured at some poinaway from the origin. The can write
energy flux operator is given b§2.6) with u(y,#) — ¢(y,1), o

the total field given by the solutiof#.4) of the field equation. . 1y 3,2 2 o
With this, forming the expectation, we can write (air(y. 1)) = 2yl 7 dwwt%|a(w)| COchkT' (4.20)
0
(7 @ 0) = (o, ) +{air (v, ) + (e (v, 1), (4.14) | the same way the interference tef#al7)becomes
where(jo(y, 1)) is the energy flux in the absence of the oscilla- y he?
tor, int(v. 1)) = = —
1 9" (y. 1) 39" (v. 1) e .

. _ 1 V.t V.t k . ,
{joy,0)= 54¢ Re< ot By > (4.15) X ZRe{i(W_y' + |k|>a)§a(a))e’(k3‘”|y/‘)}
{jdir(y, 1)) is the energy flux arising from source alone, ¢ ho

x coth—. (4.21)
. 1y [ Iyl 2kT
(]dlr(ya t)) =58 x\t=—)) (4.16) . . . . .
21y ¢ Recalling that the sum is over positive and negativeve dis-
and{jint(y, 1)) is the interference term card terms that are odd in The result, again after forming the
limit L — oo, can be written
(jint(y, 1)) o
R A YR AR N A O : __}LE/ 2 fo
— = _ A A ST e S AR Jint(y, 1)) = dw ot Imi{a(w) | coth . (4.22)
2; RE<X(I c )(C ay iyl ot . < n > 20yl 7 { } kT

(4.17) 0

To get some insight into the significance of these terms, wBUt, as we see fronf4.12) Im{a(w)} = wt|a(w)[?. There-
multiply both sides of the Langevin equati¢.5) by dx /dt, fore, comparing the expressio(20) and (4.22)we see that

symmetrize the factors in each term and form the expectatiofyint(y, 1)) = —(Jdir(y, 1)) and

of the_ resulting equation to get the oscillator energy balanc?j (y t)>: 0 (4.23)
equation: ’ ’ '

d 11 1 1 This result, which took some doing to obtain, should have
—<—mx2 + —Kx2> + (¥ = S F + Fi). (4.18)  been expected from the beginning. After all, in equilibrium the
dr\2 2 2 mean energy of the oscillator is constant, so the mean energy

Here the first term on the left is clearly the rate of change of thdlux radiated into the field by the oscillator must be balanced
mean oscillator energy. The second term is interpreted as th®y a mean energy flux from the field into the oscillator. This
mean rate of radiation of field energy by the oscillator, whileis just the resul{4.23) Put another way, we can now interpret
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(jint(y, 1)) as the inward flux of field energy to balance the ra-Treating the right-hand side as known, the solution of this wave

diated power. equation is
Finally, we remark on the situation when the oscillator is ex- n re
cited, say, by an impulse appliedzat 0. In this case there will ?(¥> ) =&"(v.1) — x ("), (5.8)

be a mean motion superposed on the random thermal motion gfhere ¢” (y, 1) is the general solutiof4.8) of the free wave
the oscillator. One can then calculate the net radiated flux of enequation and "' is the retarded time. The retarded time is de-
ergy using only the expressiga.16)for (jair(y, 1)), evaluated  fined implicitly as a function of the field pointy, r) by the
for the mean motion. There will be no interference term sinceelation

the mean motion will be uncorrelated with the random motion

of the field. t—1(z) = |y =y (") /e, (5.9)
) o _ and corresponds to the point on the mechanical (aff)where
5. Oscillator moving in thefield it pierces the backward light cone centered at the field point.

) ] ) ] o Note in particular that when the field point is on the mechan-
Consider now an oscillator undergoing a given motion in the, path, thent™ = z. Thus, the solution(5.8) of the in-

field direction[4]. The idea is that in addition to themotion homogeneous wave equation can be writidn(z), (r)] =

the oscillator has a giveprmotion, ¢"[y(1),1(1)] — x(r). Putting this in the right-hand side of
y = (1), r=1(1), (5.1) the particle equation of motiof6.6), we obtain a quantum
. . Langevin equation,
wherert is the proper time,
2 2,.2\1/2 m&—i— d—x+K = F(1) (5.10)
dt = (dt —dy“/c ) . (5.2) 472 Cdr X = ) .

We shall later take this to be the hyperbolic motion describedvhere¢ is the friction constant, given by the same expression
in Section3, but for now we assume only that the motion is (4.6)obtained for the oscillator at a fixed point. In this Langevin

mechanically allowed, stdy/dt| < c. The Lagrangiarn(4.1)  equation, the fluctuating operator foréz) is given by
must be modified to take the motion into account. First of all,

consider the kinetic energy, which must be replaced by the relg () = ¢ M (5.11)
ativistic free particle Lagrangigi 3], dr
We note that this Langevin equation has the same form as
2 1/dy 21 fdx\? the Langevin equatio¥.5) corresponding to the oscillator at
Liree = —mc®y/1— 2 <E) T2 (E) ' (53) 4 fixed point. Indeed, it reduces to that equation for the special

motiony(t) =0, t(t) =1t.
Next, consider the correlation of the fluctuating force. Using
the above definition, we see that

But thex-motion is nonrelativistic while the-motion is arbi-
trary, so we expand

Liree = —mc

1 /dy\? 1 1 [dx\? 1
1 2 <dt> m2m<dt) . 2<F(11)F(12) + F(12) F(t1))
2\ dt d2
(5.4) =2
We drop the first term, since themotion is given, and replace
the kinetic energy in the Lagrangiéh. 1) with the second term. WhereC(Ay, Ar) is the correlation functiof2.13)for the real
Next, consider the potential energy, which must be multipliedscalar field. AtT = 0, this correlation is given by the explicit
expressior{2.25) so we can write

a

dridt, Cly(r1) — y(r2).1(r) — 1(z2)], (5.12)

by the time-dilation factot/1— 4 (4¥)2. Finally, the interac-
tion must involve the field at the instantaneous position of the}<F(r1)F(T2) T F(TZ)F(Tl))

particle. The resulting Lagrangian can be written 2
e d?

dt1 (dx\*® dr1l_, dx =2 log(Ar% — Ay?/c?) (T =0). (5.13)
L=—-m|— ) ——=Kx*—20c—

e 2m<dt> I X Ucdtqﬁ[y(t),t(r)] 27 dti1dto - o

2 2 The commutator of the fluctuating force is given by
o[ [/0¢ o 3¢
+ dyE — ) —c = | (5.5) , d?
ot 9y [F(r), F(r2)] =¢ (6 (1, 12), B (v2, 12)]. (5.14)
dtidty

where we have used the definitiB2) of the proper time. . o _ '
With this Lagrangian, the oscillator equation of motionis ~ Using the explicit expressiof2.29) we can write
2

d’x dly(r),1(v)] ,

ulliad — ’ F , F =—ih sgnA
m-—s +Kx=20c e , (5.6) [F(r). F(12)] i §dr1d12 gn(AT)
while that for the field is the inhomogeneous wave equation, =2iht8 (11— 12). (5.15)
924 232¢ dx Note that the form of the Langevin equation and the com-

32 ¢ n2 CE‘S[y—Y(T)]- (5.7)  mutator of the fluctuating force operator are independent of the
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motion. However, the correlation of the force is explicitly de- of the gamma functiofil5], to obtain the result

pendent upon the motion. imea! | F ,
Now we consider the special case of hyperbolic motion. Wq,<9; w/) _ne (’"“”) oTmee [2F (—i M)

could use the explicit expressiqh.13) for the force correla- ¢ F\ F F

tion, but it will be useful in the later discussion to obtain the (5.23)

expression in a different form. We begin with the normal mode Next, consider

expansion(4.8) of the free field, which with the expression

(5.11)for the fluctuating force results in the expansion Z L—cc(k; w1)c(k; wp)*
w
k
d h
F(t) = d_Z /% _ ;-szCZemnc(lerwz)/ZFF _jmewn\ L mew2
L @ nF? F F
i[ky(t)—wt (7)] T ,—ilky(r)—wt(1)] e i -
x (age' +ae . (5.16) 1 imc(w1—w2)/ F
( g ) x Re /dw—(’"“‘)> , (5.24)
We next introduce the Fourier expansion o\ F
1 oo where we have used the prescripti¢®.15) for the limit
@] = = / do c(k; )e ', (5.17) L — oo, then the conditior(5.21) and the dispersion relation
2 e (2.10) to write the integral as over positive frequencies. With

the substitutiorv = log(mcw/ F) the integral here becomes the
familiar integral for the Dirac delta-function and is therefore
given by (2 F/mc)é (w1 — w2). It follows that

o0
1 Chc
F(t)= 5= / do' o Vrw hc
i J Zk: Lo > T ckionelk; w2)”

k

to write

x (are(k; )e T — alck; o'y i), (5.18) ok emmeen/ 5( ) (5.25)
=2Th————————-0(w1 — w2), '

Forming the zero-temperature correlation, using the expectation w1 SINh#522L

values(2.12)we can write where we have used the ident|fy(ix)|2 = (r/x) sinhzx. Us-

1 ing this result in Eq(5.19) we find that the zero-temperature
§<F(T1)F(T2) + F(2) F(t1)) correlation can be expressed in the form
o o0 1
= % / dw / dwy w1w2 E(F(Tl)F(IZ) + F(TZ)F(H))
T o0
—00 —00
= 1 / dotw cothnn}m codw(r1 — ). (5.26)

. h
xRe{e’(wlrleIZ) E —LC c(k; a)l)c(k;a)z)*}. (5.19) 4 0
)
k

) _ ) ) ) Again, we see the Unruh temperat{8e5). That s, this force
To evaluate this expression, we first consider the Fourier tran%_'utocorrelation seen by the oscillator in hyperbo"c motion

form, through a zero-temperature field is identical with tfét10)
00 seen by an oscillator at rest in a field at the Unruh temperature.

ks ) = / d 10 Ty (D =01 (@] (5.20) (Reqall th{:lt the prop_er timeis the time as_ measure_d on aclock

moving with the oscillator.) We emphasize that this means that
- the moving oscillator is itself at the Unruh temperature.

Note first that for hyperbolic motion(z) is even and(z) is

odd as a function of, so 6. Energy radiated by an oscillator undergoing hyperbolic
motion

c(—k; ') =clk; ). (5.21)

We now calculate the flux of energy radiated by the oscillator
undergoing hyperbolic motion in a zero-temperature field. As
we have seen, the moving oscillator is at the elevated Unruh
temperature. This picture of a hot oscillator moving through

00 a zero-temperature background leads one to expect that there
C(g; w/) __mc /dzzflfimcw’/Fefmcwz/F. (5.22) should be radiation. After all, doesn’t heat always flow from a

c hot body to a cold body? But in this section we shall show by

explicit calculation that the net energy flux is zero.

Finally, we rotate the path of integration into the positive  Consider now the flux of field energy radiated by the os-
imaginary axis, and use the well-known integral representatiogillator as measured at some point to the left of the point of

It is therefore sufficient to consider positive= w/c. For
this case, using Eqé4.8) of hyperbolic motion, we make in the
integral(5.17)the substitution; = e~ F7/"¢ to get

F
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closest approach in hyperbolic motion. The energy flux operaescillator, where the rate of radiation is uniform, to a station-
tor is given by(2.6)with u(y,t) — ¢(y, t), the total field given  ary clock at the field point. Using the expressi@¥) for the

by the solution(5.8) of the field equations for the oscillator in retarded time, we see that

hyperbolic motion. Forming the expectation, we can write justarret

. . mc
as in Sectiort, o T FC10 O<t+y/c<oo. (6.8)
(7 r.0) = {io(y. D))+ {air(y. ) + {jint (v, 1)), (6.1) Thus, (jair(y,?)) corresponds to a flux that is zero for
where(jo(y, 1)) is the energy fluX4.15)in the absence of the ¢ < —y/c, then suddenly infinite and decaying to zero for
oscillator, while now the direct flux is given by long times. Finally, sincejqir(y, 1)) corresponds to the energy
0 (2 Bx (€Y lost by the oscillator through radiation, the interference term
(jair (v, 1)) = _te Re< x(*) L> (6.2)  (jint(y. 1)) must be the inward flux of field energy absorbed by
2 ot dy the oscillator. Since the oscillator is in a stationary equilibrium
and the interference term is given by state corresponding to the Unruh temperature, one should ex-
) pect that these two fluxes should balance, just as they do for
(Jim(y’ t)> an oscillator at rest. We next show by explicit calculation that
e _ 39" (v, 1) dx(c"®Y  dx(z"Y 3¢ (y, 1) these two fluxes do indeed cancel to give a net flux of zero.
— Re< 9t Ay + 9t dy > (6.3) We begin using the expressigp.18) for the fluctuating

force, to write the solution of the quantum Langevin equation

In these expressions, the retarded time is determined by t 10)in the form

condition(5.9). For a field point to the left of the point of clos-

est approachy < mc?/F and, using Eqs(3.2) of hyperbolic 1 ®
; - o [the
motion, we find x(t)=— / do' w Z —
2mi p Lw

—0o0

mc F(t+y/c)
ret= F |Og— (64) , N . + N % N o't
mc X (akot(a) Ye(k; w')e —aa(w)clk;w)e ),
Thus, cat™/dy = dt"!/ar and using the chain rule we can 6.9)
write 5 ) where a(w) is the oscillator susceptibility4.12) With this,
(e 1) = RYEiae dx(z"®) (6.5) forming the expectation using the expectation val(@42)
ety DI=75\ Tor dret ' with T = 0, then using the resu6.25)we find
and dx@N\2 h o0
X(T 3.2 2 Tmcw
. =— th . i
(int(y. 1)) ;<( dr > > n/d“"" ot eoth =5 (6.10)
0

arret dx (Y [ 9" (v, ¢ ol (y, t
= % P Re< d(fret)( ¢ B(ty ) +c ¢ a(yy )>> (6.6)  As we have seen, this is the rate at which the oscillator loses
i . o o energy through radiation. It is independent of time as measured
As in Section4, we get some insight into the significance of j, the moving frame and identical with the same quantity for a
these terms if we consider the energy balance equation for th§aionary oscillator. With this, we see that the direct flux can

moving oscillator, be written
d|1/dx(\*> 1, dx(t)\? aren\2 p
Iy K ;L - _ —
dr<2< dt ) PRI | (e Lair (v 1) = ( ar ) 21
1/dx(7) dx(r)> ¥
== F(t)+ F . 6.7
2< dt (®) (®) dt (6.7) x/dww3§2|a(w)‘zcothnmcw (6.11)
This is identical with the corresponding energy balance 0

equation for the oscillator at rest, the only difference being that Next consider the interference terfd.6). Using the ex-

heret is the time as measured on a clock moving with the OSpansion(4.8) of the free field and the expressi¢t.9) for the

cillator. Thus, in a frame moving with the oscillator, the energy yqcillator displacement, we form the expectation using the ex-
balance is identical with that for an oscillator at rest. In pa”ic'pectation valuef2.12)with T = 0 to get

ular, we can interpret the second term on the left as the mean

rate of radiation of field energy by the oscillator, while the right- ¢ ar'et 1 ¢ 5 -

hand side is the rate at which energy is supplied to the oscillatdpint(. 1)) = 5 Mo / do' o' a(w)e™"

by the fluctuating force, all as seen in the moving frame. The di- “00

rect flux(6.5) is half the rate of radiation of energy multiplied hc ck i

by the time dilation factofdz"®!/dr)2. The factor of two is ac- T Z o R (6.12)
counted for by the fact that half the radiation is to the left, half k

to the right. The time dilation factor corresponds to the transforSincew = c|k|, the sum can be restricted to negatierhen,
mation from the proper time kept on a clock moving with the replacing the sum by an integral, using the prescrip(ia5)
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and using the identity5.21) and the expressio5.23) for  The effect is real: the moving oscillator is in an equilibrium

c(%; ') we get state identical with that of one at rest at the Unruh temperature,
with a corresponding distribution over excited states.

c(k; e tky—en This picture of a system at a finite temperature moving

X ® through a zero-temperature vacuum might lead one to expect
smea 12 o e\ mch tha_t there would be energy rgdiated. However Gr[ﬁ]eanc_i

. F<IT> Fr Raine et al[4] argued that this was not the case, there is no

~ _ radiation. In agreement with them, our explicit model calcu-

meaw\ e lE e lation shows that there is in fact no radiation of energy. The

X /dw(—) eleutyle), (6.13) T :

F situation is exactly the same as that for a system at rest in a zero-

temperature vacuum. The system is driven by the zero-point

Next, we rotate the path of integration into the positive real axigscillations of the vacuum field while simultaneously radiating

and use the integral representation of the gamma funfifsjn  energy into the vacuum. But the driving force and the radiation

hic w—ck
L

to write reaction exactly balance, so the system remains in equilibrium
fic w— ck _ with no net radiation of energy. For our simple model of an
— c(k; ye i y=—en oscillator with scalar electrodynamics we show by explicit cal-
I ) Yy y exp
k culation that the net flux of radiant energy at a point in the field
me me —imco'/F away from the oscillator is zero, for an oscillator at rest in Sec-
= Fl+y/0) (F(t I y/c)> tion 4 and for an oscillator in hyperbolic motion in Sectién

. , , The fact that the argument is identical for an oscillator at rest
% enmcw’/Ffp<im“" )F(l— jmee ) (6.14) and one in hyperbolic motion makes it difficult to escape the
m r F conclusion that, on very general grounds, there is no radiation
We use in the first factor the expressi@8) for dt™!/dr and I either case. You cannot have the one without the other.
in the second factor the expressi(ﬁ][]_) for Tret. Then, using We have seen in Sectighthat when the oscillator is excited

the identityi ["(iz)T'(1 — ix) = / sinhx, we obtain the result Dy an external agent it will radiate, since the externally excited
motion is uncorrelated with the fluctuations of the vacuum field.

he g~ — Ckc(k. o ye—itkr—on _ haf_raenmcw/F Jio/er Unruh[5], in his response to the paper of Raine et[4], in-

L . w ’ ot sinh%“” ' troduces a heat bath moving with the oscillator. This bath is
(6.15)  assumed to be at the Unruh temperature and when it drives the

Putting this in the expressiq6.12)we get oscillator there will be radiation, the bath acting as an exter-
"2 nal agent. We ha}ve serious reservations about this plct.ure,_but

Ui (y.5)) = (arfe ) he wha}tgver its merits, it certainly does not represent the'snuatlon
’ ot 21 envisioned in the many proposals to observe the radiation, all of

00 which involve a single particle or at most a single atomic sys-
< / da)a)zlm{a(a))}cothnmcw. (6.16) tem in accelerat.ed. motion. Moreover, Unruh plages emphasis

. F on “[...] the radiation [...] &pected from the oscillator/heat

bath coming into equilibrium with the thermal radiation in the
But, as we see from the expressi@nl2)for the oscillator sus-  far past”[5]. Next, Parentanjl7] expands on this discussion
ceptibility, Im{a (@)} = wt|a(w)|?. Therefore, this is just the and shows explicitly by an [ . ] analysis of the transients when
negative of the expressidf.11)for (jair(y,?)). Thatis, one switches off the interaction.[ ]” that such transients lead

. § _ to radiation. However, during the switching-on and switching-
Uair (. )+ (e (7. ) = 0. @17 4t of the external force, we have a situation which is outside
Thus, the expected energy flux vanishes: the realm of what is understood to be the basis for Unruh radi-

ation.

<J (y’t)>:0' (6.18) Of course, hyperbolic motion is an idealization, with the
We conclude that a system that undergoes uniform acceleratidorce F applied over an infinite time. More realistically, one
with respect to the vacuum of flat space—time does not radiateould assume that at some distant but finite time in the past the
despite the fact that it does in fact thermalize at the Unruh temescillator is impulsively accelerated into hyperbolic motion and

perature. the constant force is switched on. At that time there must be an
exchange of energy with the field, but it would not be what one
7. Concluding remarks would call Unruh radiation. A description of this exchange is

outside the range of the present discussion.

A system undergoing hyperbolic motion through a zero- Our conclusion is that a system in hyperbolic motion through
temperature vacuum experiences a finite temperature, the Ua-zero-temperature vacuum does not radiate, despite the fact
ruh temperaturé€3.6). This was pointed out by David$] and  that it is in a state corresponding to the elevated Unruh tem-
Unruh[2]. Our explicit calculation for the scalar electrodynam- perature. We should point out that it has been argued by some
ics model verifies this for an oscillator in hyperbolic motion. authors[18,19] that this is an artifact of the model we have
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used. In particular, the interaction of a charged oscillator with [5] W.G. Unruh, Phys. Rev. D 46 (1992) 3271.
the electromagnetic field was discussed by Vanzella and Mat{6] P. Chen, T. Tajima, Phys. Rev. Lett. 83 (1999) 256.
sas[18] and the authors conclude that there is radiation. How-[71 M-O. Scully, V.V. Kocharovsky, A. Belyanin, E. Fry, F. Capasso, Phys.
keptical since, as we have remarked above, thg, oV L% 91 (2003) 243004.
ever, we are skepli , , » &) A.0. Barut, J.P. Dowling, Phys. Rev. A 41 (1990) 2277.
argument is essentially one of detailed balance: for a system irjo] N.B. Narozhny, et al., Phys. Rev. D 70 (2004) 048702.
equilibrium the rate of emission of radiation is exactly balanced10] B. Reznik, Phys. Rev. D 57 (1998) 2403.
by a corresponding absorption, there is no net radiation. Whdt1] P-M. Alsing, P.W. Milonni, Am. J. Phys. 72 (2004) 1524.
we have done here is to demonstrate in detail that detailed bdt2! G-W- Ford, J.T. Lewis, R.F. O'Connell, Phys. Rev. A 37 (1988) 4419.
. . . . 13] W. Rindler, Introduction to Special Relativity, second ed., Clarendon
ance holds for a system in hyperbolic motion exactly as it doe
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for a system at rest at a finite temperature. It is difficult to be{14] T.H. Boyer, Phys. Rev. D 29 (1984) 1089.

lieve that this principle is model-dependent. [15] A. Erdélyi (Ed.), Bateman Manuscript Project, Tables of Integral Trans-
forms, vol. 1, McGraw-Hill, New York, 1954.
References [16] H. Lamb, Proc. London Math. Soc. 32 (1900) 208.

[17] R. Parentani, Nucl. Phys. B 454 (1995) 227.
[18] D.A.T. Vanzella, G.E.A. Matsas, Phys. Rev. Lett. 87 (2001) 151301.

[1] P.C.W. Davies, J. Phys. A8 (1975) 609. [19] A. Higuchi, G.E.A. Matsas, D. Sudarsky, Phys. Rev. D 46 (1992) 3450.

[2] W.G. Unruh, Phys. Rev. D 14 (1976) 870.

[3] P.G. Grove, Class. Quantum Grav. 3 (1986) 802.

[4] D.J. Raine, D.W. Sciama, P. Grove, Proc. R. Soc. London A 435 (1991)
205.



	Is there Unruh radiation?
	Introduction
	Real scalar field in one dimension (stretched string)
	Hyperbolic motion
	Oscillator coupled to a one-dimensional scalar field
	Oscillator moving in the field
	Energy radiated by an oscillator undergoing hyperbolic motion
	Concluding remarks
	References


