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Abstract

We present an exact analysis of an oscillator (the detector) moving under a constant force with respect to zero-temperature vacuum a
to a one-dimensional scalar field. We show that this system does not radiate despite the fact that it thermalizes at the Unruh tempe
remark upon a differing opinion expressed regarding a system coupled to the electromagnetic field.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

It is now generally accepted that, as originally pointed
by Davies[1] and Unruh[2], a system undergoing uniform a
celeration with respect to zero-temperature vacuum will co
to equilibrium at an effective temperature that is proportiona
the acceleration. This is the so-called Unruh temperature. W
is more controversial is whether or not this implies that the s
tem actually radiates.

Grove[3] was the first to argue that, contrary to the then p
vailing opinion, the system does not radiate. This conclus
was supported by Raine et al.[4] who considered a uniforml
accelerated oscillator moving under the action of a cons
force and analyzed its effect on a detector (represented a
inertial harmonic oscillator). However, Unruh[5] claims that
Raine et al.[4] discarded some terms in the autocorrelat
function of the field that actually contribute to the excitati
of the detector. Also, we note that Ref.[4] uses a Weisskopf–
Wigner (or white-noise) approximation. Belief in the reality
the radiation may be gauged by recent suggestions as to h
might be measured[6,7], but there is widespread controvers1

* Corresponding author.
E-mail address: oconnell@phys.lsu.edu(R.F. O’Connell).

1 For example, Barut and Dowling[8] and Narozhny et al.[9] agree with the
conclusions of Refs.[3,4], whereas Reznik[10] and Alsing and Milonni[11]
disagree.
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as to whether the radiation actually exists. Thus, we are
tivated to present an exact calculation for the simple mo
of an oscillator (the detector) coupled to a scalar field (sc
electrodynamics). In particular, we discard no terms and do
introduce the Weisskopf–Wigner approximation. Our appro
is also unique in using the oscillator as a detector since it
siderably simplifies the analysis in that we only need to t
the motion of one body instead of two. Secondly, making
oscillator massive enough has the merit of ensuring that
back reaction due to the scalar field has no effect on the
cillators dynamics. The methods we use are those of a qua
Langevin approach which we have used for such problem
an oscillator coupled to the radiation field[12].

Since the subject has given rise to so much controversy
aim will be to present the discussion in a detailed pedagog
manner. We begin in Section2, where we give a simple de
scription of the real scalar field in one dimension. This field
isomorphic to the case of a stretched string[12] and to make
the discussion more intuitive we couch it in terms of the stri
Our starting point is the Lagrangian for the field, from whi
we deduce that the equation of motion of the field and the z
temperature correlation are invariant under Lorentz transfor
tion. In addition, we obtain explicit expressions for the corre
tion (which consists of a finite space- and time-dependent
plus a constant divergent term) and the commutator.

In Section3, we consider the case of a point mass m
ing under a constant force (hyperbolic motion). There we m

http://www.elsevier.com/locate/pla
mailto:oconnell@phys.lsu.edu
http://dx.doi.org/10.1016/j.physleta.2005.09.068
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use of the convenient parametric representation of the mo
sometimes called Rindler coordinates[13]. We find that the
zero-temperature correlation of the field evaluated at a sp
time point moving along the hyperbolic path is identical w
the correlation evaluated at a point fixed in space, but with
field at the elevated Unruh temperature.

Next, we take into account the coupling of an oscillator
the field. In Section4, we consider the coupling of a charg
oscillator to the field (scalar electrodynamics), such that the
cillator is at rest. This system is similar to the Lamb model o
particle attached to a stretched string[12], in that it leads to the
same Langevin equation. The solution of the Langevin equa
enables us to calculate the field and with that the flux of ene
radiated by the oscillator at rest and in equilibrium with the fi
at temperatureT . We find the net energy flux at any point in t
field is identically zero, the result of a detailed balance of a
of field energy emitted by the oscillator and a flux of field e
ergy supplied to the oscillator. This is entirely what one sho
expect, since the mean energy of the oscillator in equilibr
is constant. The point of this exercise is seen in the next
sections, where we find the for an oscillator in hyperbolic m
tion through a zero-temperature field the net flux vanishes in
same way and for the same reasons as for an oscillator at

In Section5, we extend the model discussed in the previ
section to consider an oscillator coupled to a moving poin
the field. In contrast to Raine et al., who introduced an ine
detector at a fixed point in space to test for the emission of r
ation from the moving oscillator, we simply treat the oscilla
as a detector and calculate the flux of field energy. In addit
we do not ignore quantum effects in the expressions for the
ious field correlation functions. As before, we obtain the Un
temperature. Then in Section6 we present an explicit calcu
lation to show that for an oscillator in hyperbolic motion t
expectation value of the energy flux vanishes, just as for an
cillator at rest. With some concluding remarks in Section7, we
present our conclusion that, whereas one can speak of an U
temperature, there is no corresponding radiation to be dete
In this context, we also analyze Unruh’s counterclaim[5] and
argue that it is not valid. Finally, we emphasize that our disc
sion is restricted to the specific model of an oscillator coup
to a one-dimensional scalar field. While this is the model u
by most authors, including the original work of Davies[1] and
Unruh [2], other models (for example, the more realistic o
of a charged particle coupled to the electromagnetic field[14])
can give different results. In our concluding remarks we disc
conflicting opinions concerning the radiation with such mod

2. Real scalar field in one dimension (stretched string)

The Lagrangian for the stretched string is

(2.1)L =
∫

dy

{
σ

2

(
∂u

∂t

)2

− τ

2

(
∂u

∂y

)2}
,

whereσ is the mass per unit length,τ is the tension andu(y, t)

is the string displacement. The integral is along the lengt
the string, which is stretched in they direction. For the rea
scalar field it is customary to putσ = 1/4π and τ = c2/4π ,
n
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wherec is the velocity of light. In that caseu has the dimension
(mass· length)1/2. The equation of motion of the string is th
homogeneous wave equation,

(2.2)
∂2u

∂t2
− c2∂2u

∂y2
= 0,

wherec is the speed of waves in the string,

(2.3)c = (τ/σ )1/2.

There is an energy conservation law,

(2.4)
∂E
∂t

+ ∂j

∂y
= 0,

with energy density

(2.5)E(y, t) = σ

2

(
∂u(y, t)

∂t

)2

+ τ

2

(
∂u(y, t)

∂y

)2

and energy flux

(2.6)j (y, t) = −τ

2

(
∂u(y, t)

∂t

∂u(y, t)

∂y
+ ∂u(y, t)

∂y

∂u(y, t)

∂t

)
.

Although for the stringc is not necessarily the speed of ligh
the equation of motion is still invariant under the Lorentz tra
formation with velocityv:

y′ = γ (y − vt), t ′ = γ
(
t − vy/c2),

(2.7)u′(y′, t ′) = u(y, t),

where

(2.8)γ = (
1− v2/c2)−1/2

.

Of course, for the real scalar field in one dimension thi
the usual Lorentz transformation.

The normal mode expansion of the displacement oper
may be written

(2.9)u(y, t) =
∑

k

√
h̄

2σLω

(
ake

i(ky−ωt) + a
†
k e

−i(ky−ωt)
)
,

whereL is the length of the string and for periodic bounda
conditions the sum is over positive and negative integer m
ples of 2π/L. The frequency is given by the dispersion relati

(2.10)ω = c|k|.
The string is quantized when we assume the canonical c

mutation relations for the dimensionless normal mode am
tudes,

(2.11)
[
ak, a

†
k′
] = δk′,k, [ak, ak′ ] = 0.

When the string is in equilibrium at temperatureT , we have
the expectation values

〈
aka

†
k′ + a

†
k′ak

〉 = coth
h̄ω

2kT
δk′,k,

(2.12)〈akak′ + ak′ak〉 = 0.

The correlation function for the string is

(2.13)C(�y,�t) ≡ 1〈
u(y1, t1)u(y2, t2) + u(y2, t2)u(y1, t1)

〉
,

2
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(2.14)�y = y1 − y2, �t = t1 − t2.

In the limit of an infinite string (L → ∞) we evaluate this
using the above relations together with the prescription

(2.15)
∑

k

→ L

2π

∞∫
−∞

dk.

The result is

C(�y,�t)

(2.16)= h̄

4πσ

∞∫
−∞

dk
1

ω
coth

h̄ω

2kT
cos(k�y − ω�t).

This integral is divergent at long wavelength (k = 0). This
is to be expected since the Lagrangian(2.1) is invariant under
uniform displacement of the string. Nevertheless, we can
obtain a useful result. To do so note that the derivative is a
ditionally convergent integral[15],

∂C(�y,�t)

∂�t
= − h̄

4πσc

∞∫
0

dω coth
h̄ω

2kT

×
[
sinω

(
�t − �y

c

)
+ sinω

(
�t + �y

c

)]

= − kT

4σc

(
coth

πkT (�t − �y/c)

h̄

(2.17)+ coth
πkT (�t + �y/c)

h̄

)
.

From this we conclude that

C(�y,�t) = − h̄

4πσc

(
logsinh

πkT (�t − �y/c)

h̄

(2.18)+ logsinh
πkT (�t + �y/c)

h̄

)
+ const,

where the constant, while infinite, is independent of�y and
�t . The case of the correlation at a fixed point on the str
(�y = 0) is of special interest,

(2.19)C(0,�t) = − h̄

2πσc
logsinh

πkT �t

h̄
+ const.

This finite-temperature correlation function in Minkows
space–time will in the next section be compared to the z
temperature correlation function in Rindler coordinates in or
to relate the constant acceleration to the Unruh temperatur

It is of interest to consider the zero-temperature correla
function in Minkowski space,

(2.20)C0(�y,�t) ≡ h̄

4πσ

∞∫
−∞

dk

ω
cos(k�y − ω�t).

Introduce in the integral a Lorentz transformation of the w
vector and frequency,

(2.21)k′ = γ
(
k − vω/c2), ω′ = γ (ω − vk).
ll
-

-
r

n

It is a simple matter to show that the dispersion relation(2.10)
is preserved under this transformation and that

(2.22)dk′/ω′ = dk/ω.

To obtain an explicit expression for the zero-temperature co
lation, putv = −�y/�t if |�y/�t | < c and v = −c2�t/�y

if |�y/�t | > c. Then, using the dispersion relation(2.10), we
obtain the expression

(2.23)C0(�y,�t) = h̄

2πσc

∞∫
0

dω
cos(ω|�t2 − �y2/c2|1/2)

ω
.

This integral is again divergent at long wavelength. Note
the divergence comes from the behavior atω = 0 and that we
can write

(2.24)C0(�y,�t) = lim
ε→0+

h̄

2πσc

∞∫
ε(�t2−�y2/c2)1/2

dt
cos(t)

t
.

Here, the integral is logarithmic att = 0, so we see that

(2.25)C0(�y,�t) = − h̄

4πσc
log

∣∣∣∣�t2 − �y2

c2

∣∣∣∣ + const,

where the constant is logarithmically divergent asε → 0, but
independent of�t and �y. Note that, since it depends on
upon the invariant interval, this zero-temperature correlatio
invariant under Lorentz transformation.

Next, consider the commutator of the field, which can
written

(2.26)
[
u(y1, t1), u(y2, t2)

] = ih̄

2πσ

∞∫
−∞

dk
sin(k�y − ω�t)

ω
.

If |�y/�t | < c, we introduce a Lorentz transformation corr
sponding tov = −�y/�t to obtain the expression[
u(y1, t1), u(y2, t2)

]
= −ih̄

2πσ

∞∫
−∞

dk
sin[ω�t(1− �y2/c2�t2)1/2]

ω

(2.27)= −ih̄

2σc
sgn(�t).

On the other hand, if|�y/�t | > c, we introduce a Lorentz
transformation corresponding tov = −c2�t/�y to obtain the
expression[
u(y1, t1), u(y2, t2)

]
(2.28)= −ih̄

2πσ

∞∫
−∞

dk
sin[k�y(1− c2�t2/�y2)1/2]

ω
= 0.

Therefore, we have the general result

(2.29)
[
u(y1, t1), u(y2, t2)

] = h̄

2iσ c
sgn(�t)θ

(
�t2 − �y2

c2

)
,

in which θ is the Heaviside function. Note that the commuta
is invariant under proper Lorentz transformation, with an ex
sign change under time reversal.
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3. Hyperbolic motion

A point massm moving under a constant forceF in relativity
moves according to the equation of motion

(3.1)
d

dt

mv

(1− v2/c2)1/2
= F,

wherev = dy/dt is the velocity. The solution can most simp
be written in parametric form,

y = mc2

F
cosh

Fτ

mc
, t = mc

F
sinh

Fτ

mc
,

(3.2)−∞ < τ < ∞,

where the parameterτ is the proper time,

(3.3)dτ = (
1− v2/c2)1/2

dt.

This solution is called hyperbolic motion. It is also call
uniformly accelerated motion, since in the instantaneous
frame the acceleration is a constant equal toF/m. The motion
corresponds to a point mass coming att = −∞ from y = +∞
with velocityv = −c, decelerating with a constant forceF until
at t = 0 it comes to rest aty = mc2/F . The mass then accele
ates back toy = +∞ at t = ∞.

For this hyperbolic motion, taking the two points to be
the same world line(3.2), we see that

(3.4)
(
�t2 − �y2/c2)1/2 = 2mc

F
sinh

F�τ

2mc
,

where�τ = τ1 − τ2. The zero-temperature correlation functi
(2.25)for the scalar field in one dimension, when evaluated
the world line, therefore takes the form

(3.5)C0(�y,�t) = − h̄

2πσc
logsinh

F�τ

2mc
+ const.

Therefore, for hyperbolic motion the correlation is a funct
of �τ alone.

Recall that the proper timeτ is the time as measured on
moving clock. Therefore, comparing(3.5) and (2.19), we see
that the zero-temperature correlation evaluated along the
perbolic path is identical to the finite-temperature correla
evaluated at a fixed point if we make the identification

(3.6)kT = h̄F

2πmc
.

This is the Unruh temperature[2].

4. Oscillator coupled to a one-dimensional scalar field

We consider a coupling of the oscillator to the field throu
the velocity. The Lagrangian is

L = 1

2
mv2 − 1

2
Kx2 − 2σcvφ(0, t)

(4.1)+
∫

dy

{
σ

2

(
∂φ

∂t

)2

− σc2

2

(
∂φ

∂y

)2}
.

This is sometimes called scalar electrodynamics. Note
the particle displacement is in thex direction, while the field
st

y-

t

extends in they direction. The oscillator interacts with the fie
at the origin (y = 0). Thus, the system is very like the Lam
model (in which the particle is attached to the center of an
nite stretched string[12,16]) and we shall see that it leads to t
same quantum Langevin equation. However, if the system
be invariant under time reversal thenφ must be odd under tim
reversal. In this sense, the fieldφ is different from the displace
mentu of a string. Otherwise, the discussion of the previo
sections applies to the free fieldφ.

The equation of particle motion is that of a driven oscillat

(4.2)m
d2x

dt2
+ Kx = 2σc

∂φ(0, t)

∂t
.

The field equation of motion is the inhomogeneous wave e
tion,

(4.3)
∂2φ

∂t2
− c2∂2φ

∂y2
= −2c

dx(t)

dt
δ(y).

We now eliminate the field variable between these two eq
tions. Treating the right-hand side as known, the solution of
field equation is

(4.4)φ(y, t) = φh(y, t) − x

(
t − |y|

c

)
,

whereφh(y, t) is the general solution of the homogeneous w
equation(2.2). Putting this solution in the particle equation
motion, we get the Langevin equation

(4.5)mẍ + ζ ẋ + Kx = F(t),

where

(4.6)ζ = 2
√

στ

is the friction constant and

(4.7)F(t) = ζ
∂φh(0, t)

∂t

is a fluctuating force operator.
The free field has the normal mode expansion(2.9),

(4.8)φh(y, t) =
∑

k

√
h̄c

ζLω

(
ake

i(ky−ωt) + a
†
k e

−i(ky−ωt)
)
,

in which we combined(2.3) and (4.6)to write ζ = 2σc. From
this we see that the fluctuating force can be expanded,

(4.9)F(t) =
∑

k

√
h̄cζω

L

(−iake
−iωt + ia

†
k e

iωt
)
.

From this, using the canonical commutation rules(2.11) and
the expectation values(2.12), we can obtain the correlation an
commutator for the fluctuating force. If we then form the lim
L → ∞, using the prescription(2.15)and the dispersion rela
tion (2.10), we get

1

2

〈
F(t1)F (t2) + F(t2)F (t1)

〉

= h̄

π

∞∫
dω ζω coth

h̄ω

2kT
cos

[
ω(t1 − t2)

]
,

0
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[
F(t1),F (t2)

] = −i
2h̄

π

∞∫
0

dω ζω sin
[
ω(t1 − t2)

]
.

Using the expansion(4.9) of the fluctuating force in the right
hand side of the Langevin equation(4.5), we see that the solu
tion has the expansion

(4.11)x(t) =
∑

k

√
h̄cζω

L

[−iα(ω)ake
−iωt + iα(ω)∗a†

k e
iωt

]
,

whereα(ω) is the oscillator susceptibility,

(4.12)α(ω) = (−mω2 − iωζ + K
)−1

.

It is of interest to form the position correlation for the osc
lator. Using the expectation values(2.12)and forming the limit
L → ∞, we find

1

2

〈
x(t1)x(t2) + x(t2)x(t1)

〉

(4.13)= h̄

π

∞∫
0

dω Im
{
α(ω)

}
coth

h̄ω

2kT
cos

[
ω(t1 − t2)

]
,

in which we have used the fact that Im{α(ω)} = ζω|α(ω)|2.
Consider now the flux of field energy radiated by the os

lator as measured at some pointy away from the origin. The
energy flux operator is given by(2.6) with u(y, t) → φ(y, t),
the total field given by the solution(4.4) of the field equation
With this, forming the expectation, we can write

(4.14)
〈
j (y, t)

〉 = 〈
j0(y, t)

〉 + 〈
jdir(y, t)

〉 + 〈
jint(y, t)

〉
,

where〈j0(y, t)〉 is the energy flux in the absence of the osci
tor,

(4.15)
〈
j0(y, t)

〉 = −1

2
ζc Re

〈
∂φh(y, t)

∂t

∂φh(y, t)

∂y

〉
,

〈jdir(y, t)〉 is the energy flux arising from source alone,

(4.16)
〈
jdir(y, t)

〉 = 1

2

y

|y|ζ
〈
ẋ2

(
t − |y|

c

)〉
,

and〈jint(y, t)〉 is the interference term〈
jint(y, t)

〉

(4.17)

= 1

2
ζ Re

〈
ẋ

(
t − |y|

c

)(
c
∂φh(y, t)

∂y
− y

|y|
∂φh(y, t)

∂t

)〉
.

To get some insight into the significance of these terms
multiply both sides of the Langevin equation(4.5) by dx/dt ,
symmetrize the factors in each term and form the expecta
of the resulting equation to get the oscillator energy bala
equation:

(4.18)
d

dt

〈
1

2
mẋ2 + 1

2
Kx2

〉
+ ζ

〈
ẋ2〉 = 1

2
〈ẋF + F ẋ〉.

Here the first term on the left is clearly the rate of change of
mean oscillator energy. The second term is interpreted a
mean rate of radiation of field energy by the oscillator, wh
e

n
e

e
e

the right-hand side is interpreted as the mean rate at which
is done on the oscillator by the fluctuating force. Of cour
in equilibrium the mean oscillator energy is constant and
remaining two terms must balance. Now, the direct term(4.16)
is clearly the energy flux corresponding to the radiated ene
directed away from the oscillator with half to the left and h
to the right. Note, incidentally, that the radiated powerζ〈ẋ2〉
is the analog of the well-known Larmor formula for the pow
radiated by an oscillating electric dipole (proportional to
square of the velocity rather than the square of the acceler
since the coupling is to a scalar rather than a vector field).

We now evaluate these fluxes using the expansion(4.8) for
the free field and the expansion(4.11) for the oscillator dis-
placement. Consider first〈j0(y, t)〉, the current in the absenc
of the oscillator. This, of course, must vanish on very gen
grounds. In this case we see that when we insert the expa
for the free field the result is a sum overk of an odd function of
k, which vanishes. Next, consider the direct flux(4.16). Using
the expansion(4.11)and the expectation values(2.12), we find
after a little rearrangement

(4.19)
〈
jdir(y, t)

〉 = y

|y|
h̄c

2L

∑
k

ω3ζ 2
∣∣α(ω)

∣∣2 coth
h̄ω

2kT
.

If we use the prescription(2.15)to form the limitL → ∞, we
can write

(4.20)
〈
jdir(y, t)

〉 = 1

2

y

|y|
h̄

π

∞∫
0

dωω3ζ 2
∣∣α(ω)

∣∣2 coth
h̄ω

2kT
.

In the same way the interference term(4.17)becomes

〈
jint(y, t)

〉 = y

|y|
h̄c2

2L

×
∑

k

Re

{
i

(
ky

|y| + |k|
)

ωζα(ω)e−i(ky−ω|y|/c)
}

(4.21)× coth
h̄ω

2kT
.

Recalling that the sum is over positive and negativek, we dis-
card terms that are odd ink. The result, again after forming th
limit L → ∞, can be written

(4.22)
〈
jint(y, t)

〉 = −1

2

y

|y|
h̄

π

∞∫
0

dωω2ζ Im
{
α(ω)

}
coth

h̄ω

2kT
.

But, as we see from(4.12), Im{α(ω)} = ωζ |α(ω)|2. There-
fore, comparing the expressions(4.20) and (4.22), we see tha
〈jint(y, t)〉 = −〈jdir(y, t)〉 and

(4.23)
〈
j (y, t)

〉 = 0.

This result, which took some doing to obtain, should h
been expected from the beginning. After all, in equilibrium
mean energy of the oscillator is constant, so the mean en
flux radiated into the field by the oscillator must be balan
by a mean energy flux from the field into the oscillator. T
is just the result(4.23). Put another way, we can now interpr
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〈jint(y, t)〉 as the inward flux of field energy to balance the
diated power.

Finally, we remark on the situation when the oscillator is
cited, say, by an impulse applied att = 0. In this case there wil
be a mean motion superposed on the random thermal moti
the oscillator. One can then calculate the net radiated flux o
ergy using only the expression(4.16)for 〈jdir(y, t)〉, evaluated
for the mean motion. There will be no interference term si
the mean motion will be uncorrelated with the random mot
of the field.

5. Oscillator moving in the field

Consider now an oscillator undergoing a given motion in
field direction[4]. The idea is that in addition to thex-motion
the oscillator has a giveny-motion,

(5.1)y = y(τ), t = t (τ ),

whereτ is the proper time,

(5.2)dτ = (
dt2 − dy2/c2)1/2

.

We shall later take this to be the hyperbolic motion descri
in Section3, but for now we assume only that the motion
mechanically allowed, so|dy/dt | < c. The Lagrangian(4.1)
must be modified to take the motion into account. First of
consider the kinetic energy, which must be replaced by the
ativistic free particle Lagrangian[13],

(5.3)Lfree= −mc2

√
1− 1

c2

(
dy

dt

)2

− 1

c2

(
dx

dt

)2

.

But thex-motion is nonrelativistic while they-motion is arbi-
trary, so we expand

(5.4)

Lfree∼= −mc2

√
1− 1

c2

(
dy

dt

)2

− 1√
1− 1

c2

( dy
dt

)2

1

2
m

(
dx

dt

)2

.

We drop the first term, since they-motion is given, and replac
the kinetic energy in the Lagrangian(4.1)with the second term
Next, consider the potential energy, which must be multip

by the time-dilation factor
√

1− 1
c2 (

dy
dt

)2. Finally, the interac-
tion must involve the field at the instantaneous position of
particle. The resulting Lagrangian can be written

L = dt

dτ

1

2
m

(
dx

dt

)2

− dτ

dt

1

2
Kx2 − 2σc

dx

dt
φ
[
y(τ), t (τ )

]

(5.5)+
∫

dy
σ

2

[(
∂φ

∂t

)2

− c2
(

∂φ

∂y

)2]
,

where we have used the definition(5.2)of the proper time.
With this Lagrangian, the oscillator equation of motion is

(5.6)m
d2x

dτ2
+ Kx = 2σc

dφ[y(τ), t (τ )]
dτ

,

while that for the field is the inhomogeneous wave equation

(5.7)
∂2φ

2
− c2∂2φ

2
= −2c

dx
δ
[
y − y(τ)

]
.

∂t ∂y dt
of
-

d

,
l-

Treating the right-hand side as known, the solution of this w
equation is

(5.8)φ(y, t) = φh(y, t) − x
(
τ ret),

whereφh(y, t) is the general solution(4.8) of the free wave
equation andτ ret is the retarded time. The retarded time is d
fined implicitly as a function of the field point(y, t) by the
relation

(5.9)t − t
(
τ ret) = ∣∣y − y

(
τ ret)∣∣/c,

and corresponds to the point on the mechanical path(5.1)where
it pierces the backward light cone centered at the field po
Note in particular that when the field point is on the mech
ical path, thenτ ret = τ . Thus, the solution(5.8) of the in-
homogeneous wave equation can be writtenφ[y(τ), t (τ )] =
φh[y(τ), t (τ )] − x(τ). Putting this in the right-hand side o
the particle equation of motion(5.6), we obtain a quantum
Langevin equation,

(5.10)m
d2x

dτ2
+ ζ

dx

dτ
+ Kx = F(τ),

whereζ is the friction constant, given by the same express
(4.6)obtained for the oscillator at a fixed point. In this Lange
equation, the fluctuating operator forceF(τ) is given by

(5.11)F(τ) = ζ
dφh[y(τ), t (τ )]

dτ
.

We note that this Langevin equation has the same form
the Langevin equation(4.5) corresponding to the oscillator
a fixed point. Indeed, it reduces to that equation for the spe
motiony(τ) = 0, t (τ ) = t .

Next, consider the correlation of the fluctuating force. Us
the above definition, we see that

1

2

〈
F(τ1)F (τ2) + F(τ2)F (τ1)

〉
(5.12)= ζ 2 d2

dτ1 dτ2
C

[
y(τ1) − y(τ2), t (τ1) − t (τ2)

]
,

whereC(�y,�t) is the correlation function(2.13)for the real
scalar field. AtT = 0, this correlation is given by the explic
expression(2.25), so we can write

1

2

〈
F(τ1)F (τ2) + F(τ2)F (τ1)

〉
(5.13)= h̄ζ

2π

d2

dτ1 dτ2
log

(
�t2 − �y2/c2) (T = 0).

The commutator of the fluctuating force is given by

(5.14)
[
F(τ1),F (τ2)

] = ζ 2 d2

dτ1 dτ2

[
φ(y1, t1),φ(y2, t2)

]
.

Using the explicit expression(2.29), we can write

[
F(τ1),F (τ2)

] = −ih̄ζ
d2

dτ1 dτ2
sgn(�τ)

(5.15)= 2ih̄ζ δ′(τ1 − τ2).

Note that the form of the Langevin equation and the co
mutator of the fluctuating force operator are independent o
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motion. However, the correlation of the force is explicitly d
pendent upon the motion.

Now we consider the special case of hyperbolic motion.
could use the explicit expression(5.13) for the force correla-
tion, but it will be useful in the later discussion to obtain t
expression in a different form. We begin with the normal mo
expansion(4.8) of the free field, which with the expressio
(5.11)for the fluctuating force results in the expansion

F(τ) = d

dτ

∑
k

√
ζ h̄c

Lω

(5.16)× (
ake

i[ky(τ)−ωt(τ)] + a
†
k e

−i[ky(τ)−ωt(τ)]).
We next introduce the Fourier expansion

(5.17)ei[ky(τ)−ωt(τ)] = 1

2π

∞∫
−∞

dω′ c(k;ω′)e−iω′τ ,

to write

F(τ) = 1

2πi

∞∫
−∞

dω′ ω′ ∑
k

√
ζ h̄c

Lω

(5.18)× (
akc(k;ω′)e−iω′τ − a

†
k c(k;ω′)∗eiω′τ ).

Forming the zero-temperature correlation, using the expecta
values(2.12)we can write

1

2

〈
F(τ1)F (τ2) + F(τ2)F (τ1)

〉

= ζ

4π2

∞∫
−∞

dω1

∞∫
−∞

dω2 ω1ω2

(5.19)×Re

{
e−i(ω1τ1−ω2τ2)

∑
k

h̄c

Lω
c(k;ω1)c(k;ω2)

∗
}
.

To evaluate this expression, we first consider the Fourier tr
form,

(5.20)c(k;ω′) =
∞∫

−∞
dτ ei[ω′τ+ky(τ)−ωt(τ)].

Note first that for hyperbolic motiony(τ) is even andt (τ ) is
odd as a function ofτ , so

(5.21)c(−k;ω′) = c(k;ω′)∗.

It is therefore sufficient to consider positivek = ω/c. For
this case, using Eqs.(4.8)of hyperbolic motion, we make in th
integral(5.17)the substitutionz = e−Fτ/mc to get

(5.22)c

(
ω

c
;ω′

)
= mc

F

∞∫
0

dz z−1−imcω′/F e−mcωz/F .

Finally, we rotate the path of integration into the posit
imaginary axis, and use the well-known integral representa
n

s-

n

of the gamma function[15], to obtain the result

(5.23)

c

(
ω

c
;ω′

)
= mc

F

(
mcω

F

)imcω′/F
eπmcω′/2F �

(
−i

mcω′

F

)
.

Next, consider∑
k

h̄c

Lω
c(k;ω1)c(k;ω2)

∗

= h̄m2c2

πF 2
eπmc(ω1+ω2)/2F �

(
−i

mcω1

F

)
�

(
i
mcω2

F

)

(5.24)× Re

{ ∞∫
0

dω
1

ω

(
mcω

F

)imc(ω1−ω2)/F
}

,

where we have used the prescription(2.15) for the limit
L → ∞, then the condition(5.21) and the dispersion relatio
(2.10) to write the integral as over positive frequencies. W
the substitutionv = log(mcω/F) the integral here becomes th
familiar integral for the Dirac delta-function and is therefo
given by(2πF/mc)δ(ω1 − ω2). It follows that∑

k

h̄c

Lω
c(k;ω1)c(k;ω2)

∗

(5.25)= 2πh̄
eπmcω1/F

ω1 sinhπmcω1
F

δ(ω1 − ω2),

where we have used the identity|�(ix)|2 = (π/x)sinhπx. Us-
ing this result in Eq.(5.19), we find that the zero-temperatu
correlation can be expressed in the form

1

2

〈
F(τ1)F (τ2) + F(τ2)F (τ1)

〉

(5.26)= h̄

π

∞∫
0

dω ζω coth
πmcω

F
cos

[
ω(τ1 − τ2)

]
.

Again, we see the Unruh temperature(3.6). That is, this force
autocorrelation seen by the oscillator in hyperbolic mot
through a zero-temperature field is identical with that(4.10)
seen by an oscillator at rest in a field at the Unruh tempera
(Recall that the proper timeτ is the time as measured on a clo
moving with the oscillator.) We emphasize that this means
the moving oscillator is itself at the Unruh temperature.

6. Energy radiated by an oscillator undergoing hyperbolic
motion

We now calculate the flux of energy radiated by the oscilla
undergoing hyperbolic motion in a zero-temperature field.
we have seen, the moving oscillator is at the elevated Un
temperature. This picture of a hot oscillator moving throu
a zero-temperature background leads one to expect that
should be radiation. After all, doesn’t heat always flow from
hot body to a cold body? But in this section we shall show
explicit calculation that the net energy flux is zero.

Consider now the flux of field energy radiated by the
cillator as measured at some point to the left of the poin
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closest approach in hyperbolic motion. The energy flux op
tor is given by(2.6)with u(y, t) → φ(y, t), the total field given
by the solution(5.8) of the field equations for the oscillator
hyperbolic motion. Forming the expectation, we can write
as in Section4,

(6.1)
〈
j (y, t)

〉 = 〈
j0(y, t)

〉 + 〈
jdir(y, t)

〉 + 〈
jint(y, t)

〉
,

where〈j0(y, t)〉 is the energy flux(4.15)in the absence of th
oscillator, while now the direct flux is given by

(6.2)
〈
jdir(y, t)

〉 = −ζc

2
Re

〈
∂x(τ ret)

∂t

∂x(τ ret)

∂y

〉
,

and the interference term is given by〈
jint(y, t)

〉
(6.3)= ζc

2
Re

〈
∂φh(y, t)

∂t

∂x(τ ret)

∂y
+ ∂x(τ ret)

∂t

∂φh(y, t)

∂y

〉
.

In these expressions, the retarded time is determined b
condition(5.9). For a field point to the left of the point of clos
est approach,y < mc2/F and, using Eqs.(3.2) of hyperbolic
motion, we find

(6.4)τ ret = mc

F
log

F(t + y/c)

mc
.

Thus, c∂τ ret/∂y = ∂τ ret/∂t and using the chain rule we ca
write

(6.5)
〈
jdir(y, t)

〉 = −1

2

(
∂τ ret

∂t

)2

ζ

〈(
dx(τ ret)

dτ ret

)2〉
and〈
jint(y, t)

〉
(6.6)= ζ

2

∂τ ret

∂t
Re

〈
dx(τ ret)

dτ ret

(
∂φh(y, t)

∂t
+ c

∂φh(y, t)

∂y

)〉
.

As in Section4, we get some insight into the significance
these terms if we consider the energy balance equation fo
moving oscillator,

d

dτ

〈
1

2

(
dx(τ)

dτ

)2

+ 1

2
Kx2(τ )

〉
+ ζ

〈(
dx(τ)

dτ

)2〉

(6.7)= 1

2

〈
dx(τ)

dτ
F (τ) + F(τ)

dx(τ)

dτ

〉
.

This is identical with the corresponding energy bala
equation for the oscillator at rest, the only difference being
hereτ is the time as measured on a clock moving with the
cillator. Thus, in a frame moving with the oscillator, the ene
balance is identical with that for an oscillator at rest. In par
ular, we can interpret the second term on the left as the m
rate of radiation of field energy by the oscillator, while the rig
hand side is the rate at which energy is supplied to the oscil
by the fluctuating force, all as seen in the moving frame. The
rect flux (6.5) is half the rate of radiation of energy multiplie
by the time dilation factor(∂τ ret/∂t)2. The factor of two is ac-
counted for by the fact that half the radiation is to the left, h
to the right. The time dilation factor corresponds to the trans
mation from the proper time kept on a clock moving with t
-

t

e

e

t
-

n

r
-

-

oscillator, where the rate of radiation is uniform, to a stati
ary clock at the field point. Using the expression(6.4) for the
retarded time, we see that

(6.8)
∂τ ret

∂t
= mc

F(t + y/c)
, 0< t + y/c < ∞.

Thus, 〈jdir(y, t)〉 corresponds to a flux that is zero f
t < −y/c, then suddenly infinite and decaying to zero
long times. Finally, since〈jdir(y, t)〉 corresponds to the energ
lost by the oscillator through radiation, the interference te
〈jint(y, t)〉 must be the inward flux of field energy absorbed
the oscillator. Since the oscillator is in a stationary equilibri
state corresponding to the Unruh temperature, one shoul
pect that these two fluxes should balance, just as they d
an oscillator at rest. We next show by explicit calculation t
these two fluxes do indeed cancel to give a net flux of zero.

We begin using the expression(5.18) for the fluctuating
force, to write the solution of the quantum Langevin equa
(5.10)in the form

x(τ) = 1

2πi

∞∫
−∞

dω′ ω′ ∑
k

√
ζ h̄c

Lω

(6.9)

× (
akα(ω′)c(k;ω′)e−iω′τ − a

†
kα(ω′)∗c(k;ω′)∗eiω′τ ),

where α(ω) is the oscillator susceptibility(4.12). With this,
forming the expectation using the expectation values(2.12)
with T = 0, then using the result(5.25)we find

(6.10)ζ

〈(
dx(τ)

dτ

)2〉
= h̄

π

∞∫
0

dωω3ζ 2
∣∣α(ω)

∣∣2 coth
πmcω

F
.

As we have seen, this is the rate at which the oscillator lo
energy through radiation. It is independent of time as meas
in the moving frame and identical with the same quantity fo
stationary oscillator. With this, we see that the direct flux
be written

〈
jdir(y, t)

〉 = −
(

∂τ ret

∂t

)2
h̄

2π

(6.11)×
∞∫

0

dωω3ζ 2
∣∣α(ω)

∣∣2 coth
πmcω

F
.

Next, consider the interference term(6.6). Using the ex-
pansion(4.8) of the free field and the expression(6.9) for the
oscillator displacement, we form the expectation using the
pectation values(2.12)with T = 0 to get

〈
jint(y, t)

〉 = ζ

2

∂τ ret

∂t
Im

1

2π

∞∫
−∞

dω′ ω′2α(ω′)e−iω′τ ret

(6.12)× h̄c

L

∑
k

ω − ck

ω
c(k;ω′)e−i(ky−ωt).

Sinceω = c|k|, the sum can be restricted to negativek. Then,
replacing the sum by an integral, using the prescription(2.15)
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and using the identity(5.21) and the expression(5.23) for
c(ω

c
;ω′) we get

h̄c

L

∑
k

ω − ck

ω
c(k;ω′)e−i(ky−ωt)

= eπmcω′/2F �

(
i
mcω′

F

)
mch̄

Fπ

(6.13)×
∞∫

0

dω

(
mcω

F

)−imcω′/F
eiω(t+y/c).

Next, we rotate the path of integration into the positive real a
and use the integral representation of the gamma function[15]
to write

h̄c

L

∑
k

ω − ck

ω
c(k;ω′)e−i(ky−ωt)

= mc

F(t + y/c)

(
mc

F(t + y/c)

)−imcω′/F

(6.14)× eπmcω′/F ih̄

π
�

(
i
mcω′

F

)
�

(
1− i

mcω′

F

)
.

We use in the first factor the expression(6.8) for dτ ret/dt and
in the second factor the expression(6.4) for τ ret. Then, using
the identityi�(iz)�(1− ix) = π/sinhπx, we obtain the resul

(6.15)

h̄c

L

∑
k

ω − ck

ω
c(k;ω′)e−i(ky−ωt) = h̄

∂τ ret

∂t

eπmcω′/F

sinhmcω′
F

eiω′τ ret
.

Putting this in the expression(6.12)we get

〈
jint(y, t)

〉 = (
∂τ ret

∂t

)2
h̄ζ

2π

(6.16)×
∞∫

−∞
dωω2 Im

{
α(ω)

}
coth

πmcω

F
.

But, as we see from the expression(4.12)for the oscillator sus-
ceptibility, Im{α(ω)} = ωζ |α(ω)|2. Therefore, this is just the
negative of the expression(6.11)for 〈jdir(y, t)〉. That is,

(6.17)
〈
jdir(y, t)

〉 + 〈
jint(y, t)

〉 = 0.

Thus, the expected energy flux vanishes:

(6.18)
〈
j (y, t)

〉 = 0.

We conclude that a system that undergoes uniform acceler
with respect to the vacuum of flat space–time does not rad
despite the fact that it does in fact thermalize at the Unruh t
perature.

7. Concluding remarks

A system undergoing hyperbolic motion through a ze
temperature vacuum experiences a finite temperature, the
ruh temperature(3.6). This was pointed out by Davies[1] and
Unruh[2]. Our explicit calculation for the scalar electrodyna
ics model verifies this for an oscillator in hyperbolic motio
s

n
te
-

n-

The effect is real: the moving oscillator is in an equilibriu
state identical with that of one at rest at the Unruh tempera
with a corresponding distribution over excited states.

This picture of a system at a finite temperature mov
through a zero-temperature vacuum might lead one to ex
that there would be energy radiated. However Grove[3] and
Raine et al.[4] argued that this was not the case, there is
radiation. In agreement with them, our explicit model cal
lation shows that there is in fact no radiation of energy. T
situation is exactly the same as that for a system at rest in a
temperature vacuum. The system is driven by the zero-p
oscillations of the vacuum field while simultaneously radiat
energy into the vacuum. But the driving force and the radia
reaction exactly balance, so the system remains in equilib
with no net radiation of energy. For our simple model of
oscillator with scalar electrodynamics we show by explicit c
culation that the net flux of radiant energy at a point in the fi
away from the oscillator is zero, for an oscillator at rest in S
tion 4 and for an oscillator in hyperbolic motion in Section6.
The fact that the argument is identical for an oscillator at
and one in hyperbolic motion makes it difficult to escape
conclusion that, on very general grounds, there is no radia
in either case. You cannot have the one without the other.

We have seen in Section4 that when the oscillator is excite
by an external agent it will radiate, since the externally exc
motion is uncorrelated with the fluctuations of the vacuum fie
Unruh [5], in his response to the paper of Raine et al.[4], in-
troduces a heat bath moving with the oscillator. This bat
assumed to be at the Unruh temperature and when it drive
oscillator there will be radiation, the bath acting as an ex
nal agent. We have serious reservations about this picture
whatever its merits, it certainly does not represent the situa
envisioned in the many proposals to observe the radiation, a
which involve a single particle or at most a single atomic s
tem in accelerated motion. Moreover, Unruh places emph
on “[. . . ] the radiation [. . . ] expected from the oscillator/hea
bath coming into equilibrium with the thermal radiation in t
far past” [5]. Next, Parentani[17] expands on this discussio
and shows explicitly by an “[. . . ] analysis of the transients whe
one switches off the interaction [. . . ]” that such transients lea
to radiation. However, during the switching-on and switchi
off of the external force, we have a situation which is outs
the realm of what is understood to be the basis for Unruh r
ation.

Of course, hyperbolic motion is an idealization, with t
force F applied over an infinite time. More realistically, on
could assume that at some distant but finite time in the pas
oscillator is impulsively accelerated into hyperbolic motion a
the constant force is switched on. At that time there must b
exchange of energy with the field, but it would not be what o
would call Unruh radiation. A description of this exchange
outside the range of the present discussion.

Our conclusion is that a system in hyperbolic motion throu
a zero-temperature vacuum does not radiate, despite the
that it is in a state corresponding to the elevated Unruh t
perature. We should point out that it has been argued by s
authors[18,19] that this is an artifact of the model we ha
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used. In particular, the interaction of a charged oscillator w
the electromagnetic field was discussed by Vanzella and
sas[18] and the authors conclude that there is radiation. H
ever, we are skeptical since, as we have remarked above
argument is essentially one of detailed balance: for a syste
equilibrium the rate of emission of radiation is exactly balan
by a corresponding absorption, there is no net radiation. W
we have done here is to demonstrate in detail that detailed
ance holds for a system in hyperbolic motion exactly as it d
for a system at rest at a finite temperature. It is difficult to
lieve that this principle is model-dependent.
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