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We fmd the Lagrangian to order cm4 for two charged bodies (with cl/ml = ee/mz) in 
electromagnetic theory. This Lagrangian contains acceleration terms in its final form and 
we show why it is incorrect to eliminate these terms by using the equations of motion in 
the Lagrangian as was done by Golubenkov and Smorodinskii, and by Landau and Lifshitz. 
We find the center of inertia and show that the potential energy term does not split equally 
between particles 1 and 2 as it does in the Darwin Lagrangian (Lagrangian to order CC”). 
In addition to the infinite self-energy terms in the electromagnetic energy-momentum 
tensor, which are eliminated using Gupta’s method, some new type of divergent terms are 
found in the moment of electromagnetic field energy and in the electromagnetic field 
momentum which cancel in the final conservation law for the center of inertia. 

I. INTRODUCTION 

For certain n-body Lagrangians (to order c? and in standard coordinates [I]), 
such as the Darwin (pure electromagnetism) or Einstein-Infeld-Hoffmann (pure 
gravitation) or BaZaliski (gravitation and electromagnetism) Lagrangians, it is well 
known [2, 3,4, 51 that in finding the center of inertia the potential energy terms 
-Grnirnj/rii and eiei/rij must be split equally between the particles i and j. We have 
recently shown [6] that this +, 4 split, as we shall call it, also holds for the case of the 
gravitational n-body Lagrangian (to order c-~ and in stqndard coordinates [I]) with 
parameterized post-Newtonian (PPN) parameters y and /3. We have also shown [6] 
that the 4, + split holds only for certain coordinate systems. We have found [6], for 
the case of the Bazanski Lagrangian, coordinate systems where something other than 
the &, 4 split occurs. 

In this paper we shall turn our attention to the two-body post-post-Newtonian 
(i.e., to order c-3 Lagrangian in electromagnetism. In order to postpone dipole 
radiation from the c-~ to the c-~ order we must require [7] that cl/ml = e2/m2 . If 
we were doing the n-body problem we would have to require that the charge to mass 
ratio for all the particles was the same. As we are dealing with pure electromagnetism 
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(i.e., there is no gravitation) we can and shall use only Cartesian coordinates. In 
Section 11 we shall derive this Lagrangian which contains accelerations terms in its 
final form. Golubenkov and Smorodinskii [8], and Landau and Lifshitz [9] have given 
an incorrect form of this Lagrangian by using the improper procedure of using the 
equations of motion in the Lagrangian to eliminate the acceleration terms. Using the 
equations of motion in the Lagrangian changes its functional form and, hence, leads in 
most cases (including the above) to different and, thus, incorrect equations of motion. 

In Section III we discuss Lagrange’s equations and the results for the conserved 
energy, momentum, and angular momentum for our acceleration-dependent Lagran- 
gian. The center of inertia result, d[&?rcr/czJ/dt = momentum, is also given and checked 
in this section. The results of Sections IV-VII are used to find drci . This term is not 
found from the Lagrangian and a guess that it would be given by the 4, + split is 
shown to be incorrect. 

In Section IV we find the electromagnetic field energy and in Section V we find the 
moment of electromagnetic field energy. The infinite self-energy terms in the electro- 
magnetic energy-momentum tensor are eliminated by the method of Gupta [IO], 
which is consistent with Dirac’s [ll] equations of motion. It was expected that &c, 
would be equal to the moment of particle energy + the moment of electromagnetic 
field energy. However, a new type of divergent term was found in the moment of 
electromagnetic field energy and its removal had to be justified before the finite 
&ci could be obtained. In Section VI conservation laws are given and in Section VII 
these new type of divergent terms are shown to cancel out in the conservation laws. 
We give our conclusions in Section VIII. Non-standard forms of the Darwin 
Lagrangian are included in Appendix A. In Appendix B, using a simple Lagrangian 
as an example, we demonstrate that using the equations of motion in the Lagrangian 
to eliminate the higher-order acceleration terms leads to different equations of motion 
and is thus an incorrect procedure. 

II. LAGRANGIAN TO ORDER c-~ 

The exact Lagrangian for particle 1 in an electromagnetic field (we are using 
Gaussian units) is 

Pip, = -mIc2(1 - v~~/c~)“~ + elvl . AT/c - e,q& , (0 

where AT(rl , t) and q&(rl , t) are the total potentials. Since we are only considering 
the two-body problem, the total potentials consist of the retarded potentials due to 
particle 2 and the self potentials [IO] due to particle 1. We thus have 

where 

4T = 62 + ds , AT = A2 + As, 

42 = 42ret , +s = Hbt - &d”), 

A, = Atret , As = K&et - Aladv). 

(2) 

(3) 

(4) 
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A. Expansion of the Potentials 

The retarded and advanced potentials in the Lorentz gauge at the field point rl due 
to a particle i at position ri are 

A(r, , t) = 5 j%“” “,; Fx~, x’ b>l dVj, 
(6) 

where the top (bottom) signs corresponds to the ret (adv) solutions and 

pi(x’, t) = eiS(ri - x’), (7) 

ji(x’, t) = eivJ(ri - x’), O-9 

where pi , j, and ei are the charge density, current density, and charge of particle i. 
Expanding Eqs. (5) and (6) in powers of c-l (to order c-4 in C$ and A/c) we obtain 

+ & $ jl rl - x’ I pi@‘, t) dV’ ‘f & -$ S(rl - x’)~ pi(x’, t) dv’ 

+ L ” 11 rl - x’ I3 pi(x’, t) dV’, 
24c4 at4 

A(r, , t) = f j, ffy 2 , dV’ F $$ /ji(x’, t) do’ 

+ --& & 11 rl - x’ I ji(x’, t) dV’. (10) 

Next, using Eq. (7) in Eq. (9) and Eq. (8) in Eq. (10) we get 

where 2rJ2t = 0 and 2r,/2t = vi since in the expansion rl is held fixed while ri is not 
[12]. We have a notational problem for the self-potentials when i = 1. What we shall 
do is write r:, VT, a?, for ri , vi , ai when i = 1. The operator grad(,) will operate on 
rl but not on r:. Let us also define r E rl - r2 . We then have 

24c4 2t4 6c3 2t3 > (13) 

AT(rl , t) = ..f&!?& - a2@v2) 
* 

elal 
CT 

F-t&F--. 
2 

(14) 
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B. Gauge Transformation 

We shall now go to the Coulomb gauge by making the gauge transformation 

9;=QT+, Ai = AT + grad(,) AT , (15) 

A _ e2 ar e2 a3rs 
T  

e2 a+2 
2c at 6c” at2 + 

e, G(r, - rT)2 . 
-__-_ 
24c3 at3 6c2 at2 (16) 

We then have 

Ml , t) = e2/r, 

A+@, , t) = 9 + 2 $ kr4,) rl 

e2a2 - __ - 6% a$ [grad{,, r2] 
c2 

* elal el - - - 6~2 -$ kmh(rl - rf)“l 
2 

e, a2(rv2) e2 a3 __- 
+ 2c3 at2 + 24c3 at3 g 1 rah r31. 

After evaluating the terms involving grad(,) , Eq. (18) can be written as 

2 ea 2 e a* 5 &(r, , t) = $!$. + e2(~~~r~) r - 3 L?$ _ 3 J$ 

The new Lagrangian 

9; = --m,c2(1 - u12/c2)1/2 + eIvI * MT/c - elFT , 

differs from the old Lagrangian of Eq. (1) by a total time derivative as 

ytp; = gl + d(e,A,/c)/dt. 

The equations of motion for particle 1 are 

(17) 

(18) 

(20) 

(21) 

d agp; -szo 
( 1 dt av, ik, ’ (22) 
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since the potentials are regarded as functions of rl and t only [i.e., we do not have a 
term --d2(~=!Z~/~aj)/dt2 added to the left-hand side of Eq. (22)]. Using 

ET = -grad(,,+r - (aA$/at)/c, 

HT = curl(,) A; , . 

(23) 

(24) 

together with Eq. (22) we obtain 

d 
[ 

%"l 

z (1 - u12/c2)1/2 1 = e,ET + elvl x Hr . 

However, if we use 

E, = -grad(,)& - (aA;/at)/c, 

H2 = curl(,) A’, , 

where 

4i = d; + +k, A; = A; + A;, 

together with Eq. (22) we obtain 

(26) 

(27) 

(28) 

d 
[ 

mlvl 1 2 e12i~ 
22 (1 - u12/c2)1/2 =e,E,+e,v, xH2+3~, (29) 

which is in the form of Dirac’s equation [I I] (to the order that we have expanded the 
potentials). At this stage the asterisk can be removed from &T in Eq. (29). 

We now require that elJml = e2/m2 . Then using the equations of motion where 
mlal + m2a2 = @(c-“) we find that the c-~ term in Eq. (19) is actually of order c-~ and 
can be neglected. We can now, using Eqs. (17) and (19), split our Lagrangian of 
Eq. (20) into two parts (to order c-“) as 

-q = -% + -q(4) 3 

where 

1 
%(4, = 16 

es2 Wrv2) 
~V16/C4 + 2c4 [ 

1 a3(rr) 
-@- +4-p- ."l 1 

= k mlv16/c4 + e1e2 aF2 
par-1 

and F, is defined as 

F, z z [3rv2 - v r] . 

(30) 

("1 . a"2 . 4 1 2c2r2 ’ (31) 

(32) 

(33) 
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C. Addition of Total Time Derivative 

Let us now define 

as well as 

Noting that 

dh - F,) 
Lit 

= a, . F, + v, 1% + v1 . graddv, . F,), 

(34) 

(35) 

we obtain 

9” l ) 6 d4) = 16 wl Ic 4 - s [vl * grad&, . F2) + F, . a,]. (37) 

The Lagrangian .YI contains a2, i, and ii, terms; the Lagrangian .Y; contains a, and 
H, terms; and the Lagrangian 2; contains a, and a2 terms. 

D. Two-Body Lagrangian 

After a lengthy calculation the [ ] term in Eq. (37) turns out to be symmetrical [13] 
under interchange of particle indices 1 and 2. Because of this, it is possible to obtain 
the two-body Lagrangian Y” (good for particle 2 as well as particle 1) by adding 
-m,c2(1 - v,~/c~)~/~ to 2;. We have (to order c-~) 

where 

=%I = - mlc2 + i mlv12 i- $ mlv14/c2 - m2c2 + i m2v22 .+ t m2v24/c2 

* r)” v22 + (h r3 + (v, .;r VI2 _ 3(vI . r):6(yz . d2 _ 2(v, . r)(h . a,) 
r 

+ W2 f rXv2 . ad + vl”(a2 . r) u2”(al . r) _ (vl . r12 (a2 . f) 
r r - r r3 

. r)2 (a, . r) 
+ cv2 r3 - 3r(a, . a2) + (a, . rM2 .r) 

r I. 

(39) 

(40) 
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The Lagrangian 8; is the Darwin [14] Lagrangian in standard form. In Appendix A 
we shall discuss the Darwin Lagrangian in non-standard form. The fourth-order term 
in the Lagrangian ZP;4, (for the equal mass-equal charge n-body case) has been given 
by Golubenkov and Smordinskii [8] with, however, some serious sign misprints. 

Previously in this section we used the equations of motion to show that the c-~ term 
in Eq. (19) was of order 15. Since we would have obtained the same result if we had 
waited to show this in the equations of motion of Eq. (29), what we did was in order. 

III. RESULTS FROM THE LAGRANGIAN 

A. Acceleration-Dependent n-Body Lagrangian 

Let us consider an n-body Lagrangian of the form Y = 5?(rij , v, , ac), where 
rij s ri - rj and P is a scalar in three dimensions. Let us also define 

Pi s &F/avi , (41) 

ai z aZ/aa,, (42) 

II, z Pi - bi , (43) 

hi 2 r.j X II, + Vi X Qi. (44) 

Then, extending the derivations of Landau and Lifshitz [15] to include acceleration 
terms [16] it is quite easy to verify the following. The equations of motion are 

which can also be put in the form 

hi = aY/ari. (46) 

The total energy 

d = i (I& . vi + cPi * ai) - 9 
i=l 

is conserved since B is not an explicit function of time. The total momentum 

l-I=-& 
i=l 

(47) 

(48) 

(45) 
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is conserved since dp is a function of the differences in coordinates rij . The total 
angular momentum 

(49) 

is conserved since B is a scalar in three dimensions. 
The two-body Lagrangian Y” of Eq. (38) is clearly a scalar in three dimentions and 

is not an explicit function of time. Thus, Eqs. (41)-(49) with IZ = 2 apply to 2”. 
Since Pi and @i are explicitly defined there is no problem in finding 6, n, or h. 

B. Center of Inertia 

We wish to find the center of inertia rcI corresponding to the Lagrangian 2” of 
Eq. (38). The center of inertia must satisfy the equation 

d(&,/c2)/dt = II, (50) 

which implies that (CC/C”) vcl = II and a,, = 0 since d and II are conserved quan- 
tities. The momentum II on the right-hand side of Eq. (50) must be found to order 
c-~ and can be evaluated directly from 2”. The quantity &‘rci on the left-hand side of 
Eq. (50) must be found to order c-~. 

The energy d to order CC* can be expressed as 

where 

fz = 81 + 82, (51) 

8, = mlc2 + k mlu12 + i mlu14/c2 + 5 [ 1 + v + h . rM2 . r> 
2c2r2 I , (52) 

6, = m2c2 + k m2v22 + i m2v24/c2 j- F [l + v + 05 . r)(v2 . r> 
2c2r2 1 7 (53) 

and it should be noted that the interaction energy of d has been equally split between 
b, and 6, . We call this the 4, 3 split. A guess that &ci might be equal to b,r, + g2r2 
turns out to be incorrect. From the results of Sections IV-VII, it turns out that 

Brcr = b,r, + b,r, - (P,c2 - (P2c2 + (ele2/4c2r)[(v2 . r) h - (VI . r) V21. (54) 

The $, 4 split part is due to order c2, co and c-~ particle terms, order co electric terms, 
and order c-~ magnetic terms. The --aQ,c2 - @,,c2 part is due to c-~ electric terms. 
The remaining part is due to c-~ magnetic terms. We have explicitly verified that 
Eq. (54) satisfies Eq. (50). In order to check this it is necessary to use the equations of 
motion to eliminate acceleration terms that occur in Eq. (50). 

The equations of motion (to needed order c-“) can be put in the form 

mlal = e1e2r/r3 + (ele2/2c2?){2(vl . r) v2 - 2(v, * r) v1 + [vz2 - v12 

- 2v, . v2 - 3(v, . r)“/r”] r} + e12e22r/m2c2r4, (55) 

595/129/Z-10 
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with a similar result for mZa2 which can be obtained from Eq. (55) by interchanging 
indicies 1 and 2 (Note r -+ -r). Let us also put 

II = %) + r-42, + II(,) , (56) 

where the subscripts indicate the order of c-l. We shall use the same notation in the 
expansion of P and 9, where P = P1 + P, and 9 = 41 + 42 . We then find 

%) = PM = mlvl + m2v2, (57) 

II(d = Pt2) = &mlv,v,2/c2 + &m2v2v22/c2 

+ (ele2/2c2r)bl + v2 + (vl * r) r/r” + (v2 . r) rfr”], (58) 

II(,) = ~m1v1v14/c4 + Qm2v2v24/c4 + (ele2/8rQ4){r2[2v, * v,(v, + VJ 

+ (U12V1 + v2+2 - v22v1 - v12v,)l + E(vz . r)2 - (vI * r)“l(vI - v2) 

+ 2(v, * rD2 . r)(vl + v2) + h2(v2 * r) + v22(h * r) + 3u12(vl - r) 

+ ~v,~(v, * r) - 2(v, * v&v1 * r + v2 * r) - 3(v, f r)(v2 * r)2/r2 

- 3(v2 . r)(vl . r)“/r” - 3(v, . r)3/rz - 3(v2 * r)3/r2] r} 

+ (e12e22/4m2r”c4)[2r2(v2 - VI) + 5(v, * r) r - (v2 * r) r] 

+ (e12e22/4mlr%4)[2r2(vl - v2) + 5(v, * r) r - (v, * r) r]. (59) 

Let us also note that 

II = P, + P, - &, - d, , 650) 

where 

4, = (e,e,/8c4r)[2(v2 . r) v2 - v22r + (v2 . r)2 r/r” - 3r2a, + (a, . r) r], (61) 

and we have a similar result for a2 . These values for a1 and a, must be used in 
Eq. (54) in order to have agreement with the results of Sections IV-VII. 

C. Incorrect Lagrangian 

Using the lowest-order equations of motion in the Lagrangian 8” of Eq. (38) to 
eliminate the higher-order acceleration terms as was done by Golubenkov and 
Smorodinskii [8] and Landau and Lifshitz [9] gives us the Lagrangian 3:s . Since 
the lowest-order equations of motion do not contain v1 or v, it is clear that P is the 
same for both 3”;;s and F’. However, the conserved momentum P corresponding to 
Z& is not the same as the conserved momentum II [see Eq. (60)] corresponding to 
Z’. We conclude that the equations of motion corresponding to g,& and 2” must 
also be different and that, therefore, the Lagrangian 2:s must be incorrect. 
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IV. ELECTROMAGNETIC FIELD ENERGY 

The total energy density of the electromagnetic field is given by [IO] 

WT = WI, + ws 7 (62) 

where WI, is the energy density due to the retarded fields of both pa&h 1 and 2, 
that is 

WI, = w1.2ret 7 (63) 

and 

Ws = - i( Wlret -k Wmdv) - $( WFret + Wzadv), (64) 

where Wl,,t , WIadv and W,,,t , Wzsdv are due to the fields of only particle 1 and only 
particle 2, respectively. Similar results hold for the other components of the electro- 
magnetic energy-momentum tensor. 

Since 
WI2 = (E2 + H3/87~, (65) 

where 

we find that 

E = &ret + &ret , H = HIret + &ret , (66) 

+ 2Wret * &ret + $(&et - @ad”) + *(H&et - ff&d,)]/8rr. (67) 

In this section we shall be interested in finding W, to order c-2. For $’ and A/C to 
order C-~ the retarded potentials equal the advanced potentials so that Eq. (67) now 
becomes 

WT = [E, . E, + H, . H,1/47r, (68) 

where we have dropped the subscripts ret and adv. 
From the results of Section II it is easy to see that the potentials and fields due to 

particle 1 are 

Mb f) = eliI x - rl I , (6% 

(70) A;(x, t) = elvl 
2c I x - rl I 

+ elkI * (x - rdl(x - fd 
2c I x - rl j3 ’ 

E,(x, t) = -grad(eJ x - rl I) - $ g [I x 2 r1 I + [‘l . (7 LTiy3 - ‘1) ] , 

(71) 
H,(x, t) = curl(e,vJc / x - rl I), (72) 
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with similar results due to particle 2: We then have 

with 

and 

s E, .E,dV =I,, + II + 12, 

s H, 1 H, dv = &A + Z,, , 

s 

(73) 

(74) 

(75) 

(76) 

(77) 

p = _ e1e2 
x - rl 

2c2 /x - rl j3 
b2 ’ (7 ;$; - ‘2) ) dv, 

(78) 

S( 

x - r2 Vl 

! x - r2 I3 lx - rl 1 
(79) 

13, = (Vl - v2/c”)~o I (80) 

iv1 ’ fx - r2>h . (’ - rl>l dvs 
1 x - r2 I3 I x - rl I3 (81) 

The above integrals have been evaluated (with the use of tables) by integrating over 
an infinite sphere centered at the position of particle 2. We find that 

IO = 47re,e,/r, (82) 

p = 1'2' = 0, 11 = z, = 0, (83) 

13A=4qTqy9, 

~3B=4qq-yc$+ h * r)(v, .r> 
2c2r2 1. 

(84) 

(85) 

The total energy (to order c-“) is thus 

8 = mlc2 + +rnlv12 + &z1v14/c2 + m2c2 + &n2v2” + @QV~~/C~ + f  W, dV, (86) 

where 

s w,dV=T[l+w+ (vl - r)(v, * r) 
2c2r2 I , (87) 
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which is in agreement with Eq. (51). It should be noted that the static part of J W,dY 
comes from order co electric terms while the velocity-dependent part comes from 
order c-~ magnetic terms; there is no contribution from order c-~ electric terms. 

V. MOMENT OF ELECTROMAGNETIC FIELD ENERGY 

In this section we wish to find (to order c-“) 

s W,x dV = & j.El. E,x dV + -& IHI. H,x dl’, (88) 

where 

and 

I E, . E,x dV = Jo + J, + J, , 

s H, . H,x dV = JaA + JaB , 

(89) 

(90) 

5'1' = J'l'* + Z(l),., = J'l'*, 

J'"' = JW* + ZG+, = J(Z)*, 

JM = J3”;4 + Z~.A , 
* 

JS = JW + hr, , 

(91) 

(92) 

(93) 

(94) 

(95) 

with 

Jz = eleZ (x - fl) * (x - r2) 
/ x _ rl 13 / x - r2 13 'x - r2) dV7 I 

(96) 

J1 = [Tt:,  :: [F] , 

II I1 

J, = [%I,* =; [??!& 

eleO JO'* = _ I 

2c2 

J'",* _ e1e2 

SK 2c” 

Jl;< = (~1 . v2/c2) J:, 

(97) 

(98) 

iv2 .(x - h)I(x - r2) 
I x - r3 I3 )I (x _ r,)rlV 

(99; 
[vl (x - rdl(x - rl) 

1 x - rl I3 )I (x _ ro) dc. 

;100; 
(101) 

J&=-Fs[ [VI . (x - r2)l[v2 * (x - 41 
I x - r2 I3 j x - rl I3 I 

cx _ r2j dV (102) 
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The above integrals have been evaluated (again with the use of tables) by integrating 
over a sphere of radius R, with R -+ co, centered at the position of particle 2. We 
find that 

Jo = Ww2/2~)(~l + r2), (103) 

J”‘* = --“(e,e,/2c2)[v2 (; R - 3r) + (~2 * r) r/r] , (104) 

J(Z)* = -x(ele2/2c2)[vl (i R - 3r) + (VI . r) r/r] p (105) 

J, = -4n(ele2/8c2r)[i Rra, - 3r2a2 + (a, . r) r - uz2r + 2(v2 . r) v2 

+ (v2 . r)2 r/r2 
I 

= -4n[(ele2/3cz) Ra, + 9,c2], (106) 

J, = -4rr(e,ez/8czr)[; R ra, - 3r2a, + (a, . r) r + q2r - 2(v, . r) v, 

- (v, . rj2 r/r21 = -4n[(e,e2/3c2) Ra, + ib2c2], 

JsA = 4~ [F (-)(I1 + rz)] , 

JaB -47~55 [(- w + (vl - r>(v, .r> 
2c2r2 ) (rl + r2> 

+ (v2 - r> vl _ (vl ;;J 37, 1 I 
2c2 

We thus have 

-& SE1 . E,x dV = F (rl + r,) - @,c2 - cP2c2 - 3 R(a, a,), 

f jHl . H,x dl’ = y [(+$ + 
n 

(” ‘~j$ . I’ )(r, + rz) 

+( vz . r) h _ h . r> v2 
2c2 1 2s . 

(107) 

W3> 

(109) 

(110) 

(111) 

The term -(eIe2/3c2) R(a, + a2) in Eq. (110) is a new type of divergent term. When 
its removal is justified in Section VII, Eqs. (1 IO) and (111) lead to the result of Eq. (54). 
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VI. CONSERVATIONS LAWS 

Let us start with the energy-momentum tensor T,, for both particles and fields. We 
have 

Tw = Tvp , ar,*/ax, = 0. (112) 

Let us next define the four-dimensional angular momentum tensor as 

It then follows from Eq. (112) that 

M P.“” = - M 0.w 3 aMo*u”/ax, = 0. (114) 

In the above we are using the notation that x,, = (x, ict), and x4 = ix0 . 
Integrating i3T,,/ax, over a volume and converting the 3 divergence into a surface 

integral we obtain 

s NldSz = - $1 WdV ENERGY CONSERVATION, (115) 
s V 

s d 
T<, dS, = - z 

s 
v Gi dV MOMENTUM CONSERVATION, (I161 

s 

where W =s T,, is the energy density, NE = cToL is the rate of flow of energy along 
the xz axis per unit area, Gj = TJc is the momentum density, and Tit is the rate of 
flow of the ith component of momentum along the x2 axis per unit area. 

We now define 

Integrating aM,,,,/8x, Over a volume and converting the 3 divergence into a surface 
integral we obtain 

I 
cM,,i dst 

s 

cl -- 
I dt v 

Mj dV ANGULAR MOMENTUM CONSERVATION, (I 19) 
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where Mi is the angular momentum density, and cMzsi is the rate of flow of the ith 
component of angular momentum along the x2 axis per unit area. Next, using 

M,,,$ = ctTi, - xiN&, tw 

Mo*,i = c2tGi - Xi W, (122) 

together with Eq. (116) in Eq. (120) we obtain 

f, x,WdV+ / xiN,d& = c21 GidV, 
V S V 

(123) 

which is the conservation law for the center of inertia. It should be noted that the 
total number of components of the scalar equation (115) and the vector equations 
(116), (119), (123) add up to 10, which correspond to the 10 arbitrary parameters in 
the inhomogeneous Lorentz transformation. 

For the electromagnetic field we have in addition to Eq. (65) 

N1, = cE x H/4rr, (124) 

G1, = E x H/47x, (125) 

Tim = [--EiE, - HiH, + &,(E2 + H”)l/h, VW 

and results for NT , GT and TilT can be obtained in the same manner that W, was 
obtained from WI2 . We shall also put 

T,v = Tuv~ i- Tu,, , 

where TsYT is the total energy-momentum tensor for the electromagnetic field and 
Tuyp is the particle energy-momentum tensor. 

VII. REMOVAL OF DIVERGENT TERMS 

The moment of particle energy A$ , and the particle momentum P, are both finite 
and are given by 

which can be expanded to the appropriate order in c. From our results of Eq. (110) 
and (111) we can define the finite moment of electromagnetic energy Jttr~~ to order 
c-~ as 

s 
WTx dV = JYf, - (ele2/3c2) R(a, + a,). (130) v 
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We have calculated, to order c-~, that 

I xiNIT dS, = 0, 
s 

(131) 

c2 i GT dV = c2Pf8& - (ele2/3c2) R(i, + An), 
V 

(132) 

where Pfgd is the finite electromagnetic momentum which was not explicitly found. 
To the order we calculated Eqs. (131) and (132) the ret fields =. the adv fields. 

We have also calculated, to order c-~, that 

s 
Til= d& = (ele2/3c4) R[@A + (ii2M. 

S 

Cn this case the ret fields # adv fields, and we used cl/ml = e2/m2 to eliminate a 
finite c-~ term. For Eqs. (130)-(133) we had a sphere of radius R, with R --+ co, 
centered at the position of particle 2. However, there would be no change in the 
results if the center were at the position of particle 1. 

Using Eqs. (132) and (133) in Eq. (116) we obtain (correct to order c-“) 

g [PP + P,8”&1 = 0, (134) 

and thus P, + Prodt is the conserved momentum. It should be noted that the particle 
energy-momentum tensor cannot contribute to infinite surface integrals. Using 
Eqs. (130)-(132) in Eq. (123) we obtain (correct to order cP> 

& [“Mp + Jkd,,l = C2(PP + p,&d. (135) 

Since we have used 

we must have (correct to order c-“) 

n = p, + P,&// . 

A. Conjectures 

We conjecture, that to order c-~, we will have 

J- W, dV = Q,a& + divergent part, 
” 

s 
MT dV = L,R& + divergent part, 

V 

(137) 

(138) 

(139) 
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as well as 
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8 = B, + ~f&ff, (1W 
k = L, + LfS”M . (141) 

VIII. CONCLUSIONS 

We have found that the Lagrangian to order c-* in electromagnetic theory is 
acceleration dependent and have shown why elimination of the acceleration terms by 
using the equations of motion in the Lagrangian is an incorrect procedure. However, 
there is nothing wrong with using the equations of motion in themselves to eliminate 
higher-order acceleration terms [as was done in Eq. (55) and could also have been 
done if Eq. (55) were given to order c-“1. We have also given a detailed treatment of 
the center of inertia result and have shown how some new type of divergent terms 
cancel out in the conservation laws. In a future publication [17], we will present a new 
method which enables us to replace the higher-order acceleration terms in the Lagrangian 
with velocity- and coordinate-dependent terms in such a manner that the equations of 
motion (and also the conserved energy, momentum, and angular momentum, and center 
?f inertia result) are unaltered to order cW4. 

There are two other two-body Lagrangians to order c-~ (and their corresponding 
center of inertia results, etc.) that would be very interesting to investigate. They are: 

(a) the post-post-Newtonian uncharged two-body Lagrangian in general 
relativity (an extension of the post-Newtonian Einstein-Infeld-Hoffmann Lagrangian) 
and 

(b) the post-post-Newtonian charged two-body Lagrangian in general relativity 
(an extention of the post-Newtonian Baianski Lagrangian), where the condition 
cl/ml = ez/mz must be imposed. 

We do not believe that a correct Lagrangian of either (a) or (b) exists in the litera- 
ture. A proper investigation of (a) or (b) would have to look into the problem of self- 
force in gravitation and since gravitation is non-linear this problem may be much 
more difficult than in the corresponding problem in electromagnetism [lo, Ill. It 
also seems likely that if a two-body problem can be solved the corresponding n-body 
problem can also be solved. 

Finally, let us note that we cannot have two-body (or n-body) Lagrangians of 
higher order than c-* since radiation effects occur at order cw5. 

APPENDIX A 

The Darwin Lagrangian, Eq. (39), in the Coulomb gauge (standard form) is 

~;,=‘+yq’+L (vl . r)(v2 . r) 
2c2r2 1 , (Al) 
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where PO is the free particle term. If we go back to the original Lorentz gauge we have 

(v, . r)2 a, . r ~++yq[]-!y+?&_----~ 
2CV 2c2 1 642) 

Since YD and 9’; differ by a total time derivative they have the same equations of 
motion. The Lagrangian YD does not contain a1 since we started with gI, the 
Lagrangian of particle 1 in an electromagnetic field. While Eq. (A2) is not symmetrical 
under interchange of indicies 1 and 2 the resulting equations of motion are. Inter- 
changing the indices 1 and 2 in Eq. (A2) will give us another valid Lagrangian which 
could have been obtained by starting with ,ri9, the Lagrangian of particle 2 in an 
electromagnetic field. We thus have 

l&I = 2” _ zf% [I _ !y  + g - (VI I . r)2 a, . r 
2cZr2 --TIP-’ I (A3) 

Finally, the symmetrical Lagrangian 9,,s = fr-ri”, + $PDI is also valid. We have 

_ [(VI . rj2 + (v, . r)21 + (a, - a2) . T 
4c2r2 I 4c2 . (A4) 

In the same manner as we have done for the Darwin Lagrangian, the Lagrangian 
9” of Eq. (38) can be put in different forms containing time derivatives of accelera- 
tion. 

APPENDIX B 

We wish to show in this appendix that using the equations of motion in the 
Lagrangian to eliminate the higher-order acceleration terms is an incorrect procedure 
as it leads to different equations of motion. To illustrate our point, let us choose the 
following very simple one-body Lagrangian 

9 = +pu2 - eIe2/r + (e,e,/?) a . n, , (B1) 

where n, is an arbitrary constant unit vector, and TV is the reduced mass. The last 
term in Eq. (Bl), which is the higher-order term, was chosen purely for mathematical 
simplicity, rather than physical reality. Using Eq. (Bl) in the equations of motion 

d a9 a9 d2 a9 -- 
dt av = o"r + dt2 aa ( 1 

- _ 
( ) 032) 

gives us 

pa = e1e2r/r3. (B3) 
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It should be noted that the higher-order term in Eq. (B 1) did not contribute to Eq. (B3). 
The last term in 9 can be written as d[(e,e,/2) v . n,J/dt, a total time derivative, and, 
thus, can be dropped to give us the equivalent Lagrangian 

9’ = ~pv” - e1e2/r, (B4) 

which gives us the same equations of motion, Eq. (B3). 
We shall now use the equations of motion, Eq. (B3), in the higher-order term of 

Eq. (Bl) to eliminate the acceleration term. The result is 

w2 9* = ~p,9 - y + 52$(~), 

which gives us the equations of motion 

e1e2r pa=F+ 
e12e22 n, 

[ 
3(r . n,) r 

77- 1 r5 ’ @6) 

which is clearly not in agreement with Eq. (B3). Thus we see that the Lagrangian 2’* 
is not equivalent to the Lagrangian 2’. 

It is thefunctionaIfarm of 2 which is crucial in leading to the correct equations of 
motion. Substitution into B changes its functional form, and thus, upon variation, 
changes the equations of motion. We conclude that it is not correct to use the equations 
ofmotion in the Lagrangian. 
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