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The Electromagnetic Field

The electromagnetic field, described by the Maxwell Equations,
satisfies the wave equation

(

∆ −
1

c2

∂2

∂t2

)

~A(~x , t) = 0

Fourier-transformation (~x ↔ ~k) gives

(

∂2

∂t2
+ ω2

)

~A(~k , t) = 0 with ω = c |~k|

which, for each ~k , describes a harmonic oscillator

Quantising harmonic oscillators is easy...

Thomas Prellberg The Mathematics of the Casimir Effect



The Casimir Effect
Making Sense of Infinity - Infinity

Conclusion

History
Quantum Electrodynamics
Zero-Point Energy Shift

The Electromagnetic Field

The electromagnetic field, described by the Maxwell Equations,
satisfies the wave equation

(

∆ −
1

c2

∂2

∂t2

)

~A(~x , t) = 0

Fourier-transformation (~x ↔ ~k) gives

(

∂2

∂t2
+ ω2

)

~A(~k , t) = 0 with ω = c |~k|

which, for each ~k , describes a harmonic oscillator

Quantising harmonic oscillators is easy...

Thomas Prellberg The Mathematics of the Casimir Effect



The Casimir Effect
Making Sense of Infinity - Infinity

Conclusion

History
Quantum Electrodynamics
Zero-Point Energy Shift

The Electromagnetic Field

The electromagnetic field, described by the Maxwell Equations,
satisfies the wave equation

(

∆ −
1

c2

∂2

∂t2

)

~A(~x , t) = 0

Fourier-transformation (~x ↔ ~k) gives

(

∂2

∂t2
+ ω2

)

~A(~k , t) = 0 with ω = c |~k|

which, for each ~k , describes a harmonic oscillator

Quantising harmonic oscillators is easy...

Thomas Prellberg The Mathematics of the Casimir Effect



The Casimir Effect
Making Sense of Infinity - Infinity

Conclusion

History
Quantum Electrodynamics
Zero-Point Energy Shift

Quantisation of the Field

Each harmonic oscillator can be in a discrete state of energy

Em(~k) =

(

m +
1

2

)

~ω with ω = c |~k|

Interpretation: m photons with energy ~ω and momentum ~~k

In particular, the ground state energy 1
2~ω is non-zero!

This leads to a zero-point energy density of the field

E

V
= 2

∫

E0(~k)
d3k

(2π)3

(factor 2 due to polarisation of the field)

Caveat: this quantity is infinite...
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Making (Physical) Sense of Infinity

The zero-point energy shifts due to a restricted geometry

In the presence of the boundary

Ediscrete =
∑

n

E0,n

is a sum over discrete energies E0,n = 1
2~ωn

In the absence of a boundary

E = 2V

∫

E0(~k)
d3k

(2π)3

The difference of the infinite zero-point energies is finite!

∆E = Ediscrete − E = −
π2

~c

720

L2

d3

for a box of size L × L × d with d � L
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Wolfgang Pauli’s initial reaction: ‘absolute nonsense’

Experimental verification

Sparnaay (1958): ‘not inconsistent with’
van Blokland and Overbeek (1978): experimental accuracy of 50%
Lamoreaux (1997): experimental accuracy of 5%

Theoretical extensions

Geometry dependence
Dynamical Casimir effect
Real media: non-zero temperature, finite conductivity, roughness, . . .

We are done with the physics. Let’s look at some mathematics!
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Spectral Theory

Consider −∆ for a compact manifold Ω with a smooth boundary ∂Ω
On a suitable function space, this operator is self-adjoint and
positive with pure point spectrum
One finds formally

Ediscrete =
1

2
~c Trace(−∆)1/2

This would be a different talk — let’s keep it simple for today

Choose

Ω = [0, L] and ∆ =
∂2

∂x2

with Dirichlet boundary conditions f (0) = f (L) = 0.
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Casimir Effect in One Dimension

The solutions are standing waves with wavelength λ satisfying

n
λ

2
= L

We therefore find

E0,n =
1

2
~c

nπ

L

The zero-point energies are given by

Ediscrete =
π

2L
~c

∞
∑

n=0

n and E =
π

2L
~c

∫ ∞

0

t dt
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The Mathematical Problem

We need to make sense of

∆E = Ediscrete − E =
π

2L
~c

(

∞
∑

n=0

n −

∫ ∞

0

t dt

)

More generally, consider

∆(f ) =
∞
∑

n=0

f (n) −

∫ ∞

0

f (t) dt
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Divergent Series

On the Whole, Divergent Series are the Works of the Devil and it’s a
Shame that one dares base any Demonstration upon them. You can get
whatever result you want when you use them, and they have given rise to
so many Disasters and so many Paradoxes. Can anything more horrible
be conceived than to have the following oozing out at you:

0 = 1 − 2n + 3n − 4n + etc .

where n is an integer number?

Niels Henrik Abel
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Summing Divergent Series

Some divergent series can be summed in a sensible way . . .

S =
∞
∑

n=0

(−1)n = 1 − 1 + 1 − 1 + 1 − 1 + . . .

Cesaro summation: let SN =
PN

n=0(−1)n and compute

S = lim
N→∞

1

N + 1

N
X

n=0

SN =
1

2

Abel summation:

S = lim
x→1−

∞
X

n=0

(−1)n
x

n =
1

2

Borel summation, Euler summation, . . . : again S = 1
2

. . . but some (such as

∞
∑

n=0

n) cannot
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Regularising Divergent Series

If a divergent series cannot be summed, physicists like to remove infinity

Regularisation of

∞
∑

n=0

f (n) (in particular, f (n) = n)

Heat kernel regularisation f̃ (s) =

∞
X

n=0

f (n) e
−sn

in particular,

∞
X

n=0

n e
−sn =

e
s

(es
− 1)2

=
1

s2
−

1

12
+ O(s2)

Compare with

Z

∞

0

t e
−st

dt =
1

s2
: divergent terms cancel

Zeta function regularisation f̃ (s) =
∞

X

n=0

f (n) n
−s

in particular,
∞

X

n=0

n n
−s = ζ(s − 1) , ζ(−1) = −

1

12
Digression
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Regularising Divergent Series

Regularisation result should be independent of the method used

In particular, for a reasonable class of cutoff functions

g(t; s) with lim
t→∞

g(t; s) = 0 and lim
s→0+

g(t; s) = 1

replacing f (t) by f (t)g(t; s) should give the same result for s → 0+

We need to study

lim
s→0+

∆(fg) = lim
s→0+

(

∞
∑

n=0

f (n)g(n; s) −

∫ ∞

0

f (t)g(t; s) dt

)

Two mathematically sound approaches are

Euler-Maclaurin Formula

Abel-Plana Formula
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The Euler-Maclaurin Formula

Leonhard Euler, 1707 - 1783 Colin Maclaurin, 1698 - 1746
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The Euler-Maclaurin Formula

A formal derivation (Hardy, Divergent Series, 1949)

Denoting Df (x) = f ′(x), the Taylor series can be written as

f (x + n) = enD f (x)
It follows that

N−1
∑

n=0

f (x + n) =
eND − 1

eD − 1
f (x) =

1

eD − 1
(f (x + N) − f (x))

=

(

D−1 +

∞
∑

k=1

Bk

k!
Dk−1

)

(f (x + N) − f (x))

Skip precise statement

∞
∑

n=0

f (x + n) −

∫ ∞

0

f (x + t) dt = −

∞
∑

k=1

Bk

k!
Dk−1f (x)
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Theorem (Euler-Maclaurin Formula)

If f ∈ C 2m[0, N] then

N
∑

n=0

f (n) −

∫ N

0

f (t) dt =
1

2
(f (0) + f (N)) +

+
m−1
∑

k=1

B2k

(2k)!

(

f (2k−1)(N) − f (2k−1)(0)
)

+ Rm

where

Rm =

∫ N

0

B2m − B2m(t − btc)

(2m)!
f (2m)(t) dt

Here, Bn(x) are Bernoulli polynomials and Bn = Bn(0) are Bernoulli
numbers
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Applying the Euler-Maclaurin Formula

∞
∑

n=0

f (n) −

∫ ∞

0

f (t) dt = −

∞
∑

k=1

Bk

k!
f (k−1)(0)

Introducing suitable cutoff functions g(t; s) one can justify applying
this to divergent series

For f (t) = t we find RHS = −
B1

1!
f (0) −

B2

2!
f ′(0)

∞
∑

n=0

n −

∫ ∞

0

t dt = −
1

12
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The Abel-Plana Formula

Niels Henrik Abel, 1802 - 1829
Giovanni Antonio Amedeo Plana,
1781 - 1864
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The Abel-Plana Formula

. . . a remarkable summation formula of Plana . . .

Germund Dahlquist, 1997

The only two places I have ever seen this formula are in Hardy’s book
and in the writings of the “massive photon” people — who also got it
from Hardy.

Jonathan P Dowling, 1989

The only other applications I am aware of, albeit for convergent series,
are

q-Gamma function asymptotics (Adri B Olde Daalhuis, 1994)

uniform asymptotics for
∞
∏

k=0

(1 − qn+k)−1 (myself, 1995)
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The Abel-Plana Formula

Use Cauchy’s integral formula f (ζ) =
1

2πi

∮

Γζ

f (z)

z − ζ
dz together

with

π cot(πz) =

∞
∑

n=−∞

1

z − n

to get

∞
∑

n=0

f (n) =
1

2πi

∞
∑

n=0

∮

Γn

f (z)

z − n
dz =

1

2i

∫

Γ

cot(πz)f (z) dz
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The Abel-Plana Formula

Rotate the upper and lower arm of Γ by ±π/2 to get

∞
∑

n=0

f (n) =
1

2
f (0) +

i

2

∫ ∞

0

(f (iy) − f (−iy)) coth(πy) dy

A similar trick gives

∫ ∞

0

f (t) dt =
i

2

∫ ∞

0

(f (iy) − f (−iy)) dy

Taking the difference gives the elegant result Skip precise statement

∞
∑

n=0

f (n) −

∫ ∞

0

f (t) dt =
1

2
f (0) + i

∫ ∞

0

f (iy) − f (−iy)

e2πy − 1
dy
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Theorem (Abel-Plana Formula)

Let f : C → C satisfy the following conditions

(a) f (z) is analytic for <(z) ≥ 0 (though not necessarily at infinity)

(b) lim|y |→∞ |f (x + iy)|e−2π|y | = 0 uniformly in x in every finite interval

(c)
∫∞

−∞
|f (x + iy) − f (x − iy)|e−2π|y | dy exists for every x ≥ 0 and

tends to zero for x → ∞

(d)
∫∞

0
f (t) dt is convergent, and limn→∞ f (n) = 0

Then

∞
∑

n=0

f (n) −

∫ ∞

0

f (t) dt =
1

2
f (0) + i

∫ ∞

0

f (iy) − f (−iy)

e2πy − 1
dy
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∞
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n=0

n −

∫ ∞

0

t dt = −
1

12
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Conclusion

Mathematical question posed in theoretical physics

Some really nice, old formulæ from classical analysis

The result has been verified in the laboratory

The motivation for this talk:

Jonathan P Dowling “The Mathematics of the Casimir Effect”
Math Mag 62 (1989) 324

Doing mathematics and physics together can be more stimulating than
doing either one separately, not to mention it’s downright fun.
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The Casimir Effect
Making Sense of Infinity - Infinity

Conclusion

I had a feeling once about Mathematics - that I saw it all. . . . I saw a
quantity passing through infinity and changing its sign from plus to
minus. I saw exactly why it happened and why the tergiversation was
inevitable but it was after dinner and I let it go.

Sir Winston Spencer Churchill, 1874 - 1965

The End
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Zeta Function Regularisation
Regularised Sum and Product
Product of Primes

Define for an increasing sequence 0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . the zeta
function

ζλ(s) =
∞
∑

n=1

λ−s
n

If the zeta function has an analytic extension up to 0 then define the
regularised infinite sum by

∞
∑

n=1

log λn = −ζ ′λ(0)

Alternatively, the regularised infinite product is given by

∞
∏

n=1

λn = e−ζ′

λ(0)
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Zeta Function Regularisation
Regularised Sum and Product
Product of Primes

Let λn = pn be the n-th prime so that
∏

p

p = e−ζ′

p(0) where ζp(s) =
∑

p

p−s

Using ex =

∞
∏

n=1

(1 − xn)
−µ(n)

n , one gets

eζp(s) =
∏

p

ep−s

=
∏

p

∞
∏

n=1

(

1 − p−ns
)−µ(n)

n

Observing that ζ(s) =
∏

p

(

1 − p−s
)−1

, one gets

eζp(s) =
∞
∏

n=1

ζ(ns)
µ(n)

n

(Edmund Landau and Arnold Walfisz, 1920)
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Zeta Function Regularisation
Regularised Sum and Product
Product of Primes

From eζp(s) =

∞
∏

n=1

ζ(ns)
µ(n)

n one gets the divergent expression

ζ ′p(s) =

∞
∑

n=1

µ(n)
ζ ′(ns)

ζ(ns)

At s = 0, this simplifies to

ζ ′p(0) =
1

ζ(0)

ζ ′(0)

ζ(0)
= −2 log(2π)

This calculation “à la Euler” can be made rigorous, so that

∏

p

p = 4π2

(Elvira Muñoz Garcia and Ricardo Pérez-Marco, preprint 2003)

Corollary: there are infinitely many primes Back to main talk
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