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Factoring Out the Center of Mass Motion 
The hydrogen atom consists of two particles, the proton and the electron, interacting via the 
Coulomb potential , where as usual ( ) 2

1 2 /V r r e r− = 1 2r r r= − . Writing the masses of the two 
particles as  Schrödinger’s equation for the atom is: 1,m m2
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But  are not the most natural position variables for describing this system: since the 

potential depends only on the relative position, a better choice is 
1 2 ,r r

,r R  defined by: 
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so R is the center of mass of the system. It is convenient at the same time to denote the total 

mass by 1 2 ,M m m= + and the reduced mass by 1 2
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Transforming in straightforward fashion to the variables ,r R  Schrödinger’s equation becomes 
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Writing the wave function  

( ) ( ) ( ),R r R rψ ψ= Ψ  

 
we can split the equation into two: 
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and the total system energy is   Note that the motion of the center of mass is (of 
course) just that of a free particle, having a trivial plane wave solution.  From now on, we shall 
only be concerned with the relative motion of the particles.  Since the proton is far heavier than 
the electron, we will almost always ignore the difference between the electron mass and the 
reduced mass, but it should be noted that the difference is easily detectable spectroscopically: for 
example, the lines shift if the proton is replaced by a deuteron (heavy hydrogen).  

.R rE E E= +

 
We’re ready to write Schrödinger’s equation for the hydrogen atom, dropping the r suffixes in 
the second equation above, and writing out 2∇  explicitly in spherical coordinates: 
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Factoring Out the Angular Dependence: the Radial Equation 
Since the potential is spherically symmetric, the Hamiltonian H commutes with the angular 
momentum operators 2 , zL L  so we can construct a common set of eigenkets of the three 
operators 2, , z .H L L   The angular dependence of these eigenkets is therefore that of the ’s, 
so the solutions must be of the form 

m
lY

 
( ) ( ) ( ), , , .m
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Now, notice that in the Schrödinger equation above, the angular part of 2∇  is exactly the 
differential operator 2 / 2 2L mr , so operating on ( ) ( ) ( ), , ,m

Elm Elm lr R r Yψ θ φ θ φ=  it will give 

.  The spherical harmonic can then be cancelled from the two sides of the 
equation leaving: 
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it now being apparent that R(r) cannot depend on m. 
 
The radial derivatives simplify if one factors out 1/r from the function R, writing 
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and temporarily suppressing the E and l to reduce clutter.  
 
The equation becomes: 
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Rearranging, 
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Note that this is the same as the Schrödinger equation for a particle in one dimension, restricted 
to , in a potential (for ) going to positive infinity at the origin, then negative and going 
to zero at large distances, so it always has a minimum for some positive r.   

0r > 0l ≠

 
We are interested in bound states of the proton-electron system, so E will be a negative quantity.  
At large separations, the wave equation simplifies to 
 
 

( ) ( )
22

2  (for large )
2

d u r
Eu r r

m dr
− ≅  

 
having approximate solutions 2,  where 2 /r re e mEκ κ κ− = − .   The bound states we are 
looking for, of course, have exponentially decreasing wave functions at large distances.  

Going to a Dimensionless Variable 
To further simplify the equation, we introduce the dimensionless variable  
 

2, 2r mEρ κ κ= = − /  
giving 
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where (for reasons which will become apparent shortly) we have introduced ν  defined by  
 

22 /e Eν κ= .  
 
Notice that in transforming from r to the dimensionless variable ρ  the scaling factor  depends 
on energy, so will be different for different energy bound states! 

κ

 
Consider now the behavior of the wave function near the origin.  The dominant term for 
sufficiently small ρ  is the centrifugal one, so 
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for which the solutions are ( ) ( ) 1,lu u .lρ ρ ρ ρ− +∼ ∼   Since the wave function cannot be 
singular, we choose the second. 
 
We have established that the wave function decays as re eκ ρ− −= at large distances, and goes as 

1lρ +  close to the origin.   Factoring out these two asymptotic behaviors, define ( )w ρ  by 
  

( ) ( )1 .lu e wρρ ρ ρ− +=  
 
It is straightforward (if tedious) to establish that ( )w ρ  satisfies the differential equation: 
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Putting in a trial series solution ( )
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For large values of  k,  , so  and therefore 1 / 2k kw w+ → / k k2 / !k

kw ∼ ( ) 2w e ρρ ∼ .   This means 

we have found the diverging radial wavefunction ( )u eρρ ∼ , which is in fact the correct 
behavior for general values of the energy.   
 
To find the bound states, we must choose energies such that the series is not an infinite one.  As 
long as the series stops somewhere, the exponential decrease will eventually take over, and yield 
a finite (bound state) wave function.  Just as for the simple harmonic oscillator, this can only 
happen if for some k,   Inspecting the ratio , evidently the condition for a bound 
state is that  

1 0.kw + = 1 /kw w+ k

 
,   an integernν =  

 
 in which case the series for ( )w ρ terminates at 1.k n l= − −   From now on, since we know that 
for the functions we’re interested in ν   is an integer, we replace ν  by n.  
 

To find the energies of these bound states, recall  and 22 2 /n eν κ= = E 22 /mEκ = − ,  so  
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(This defines the Rydberg, a popular unit of energy in atomic physics.) 
 
Remarkably, this is the very same series of bound state energies found by Bohr from his model!  
Of course, this had better be the case, since the series of energies Bohr found correctly accounted 
for the spectral lines emitted by hot hydrogen atoms.  Notice, though, that there are some 
important differences with the Bohr model: the energy here is determined entirely by n, called 
the principal quantum number, but, in contrast to Bohr’s model, n is not the angular momentum.  
The true ground state of the hydrogen atom, n = 1, has zero angular momentum: since 

,  n = 1 means both l = 0 and k = 0.   The ground state wave function is therefore 
spherically symmetric, and the function 

1n k l= + +
( ) 0w ρ w=  is just a constant. Hence  and 

the actual radial wave function is this divided by r, and of course suitably normalized. 
( ) 0u e ρρ ρ −= w

  
To write the wave function in terms of r, we need to find κ .   Putting together nrρ κ= ,  
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is called the Bohr radius:  it is in fact the radius of the lowest orbit in Bohr’s model. 
 
Exercise: check this last statement. 
 
It is worth noting at this point that the energy levels can be written in terms of the Bohr radius a0:  
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(This is actually obvious: remember that the energies En are identical to those in the Bohr model, 
in which the radius of the nth orbit is n2a0,  so the electrostatic potential energy is −e2/ n2a0, etc.)  
 
Moving on to the excited states: for n = 2, we have a choice: either the radial function ( )w ρ can 

have one term, as before, but now the angular momentum l = 1 (since n = k + l + 1);  or ( )w ρ  
can have two terms (so k = 1), and l = 0.  Both options give the same energy, −0.25 Ry, since n is 
the same, and the energy only depends on n.  In fact, there are four states at this energy, since 
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1l =  has states with m = 1, m = 0 and m = −1, and l = 0 has the one state m = 0.  (For the 
moment, we are not counting the extra factor of 2 from the two possible spin orientations of the 
electron.) 
 
For n = 3, there are 9 states altogether: l = 0 gives one, l = 1 gives 3 and l = 2 gives 5 different m 
values.  In fact, for principal quantum number n there are n2 degenerate states.  (n2 being the sum 
of the first n odd integers.)  
 
The states can be mapped out, energy vertically, angular momentum horizontally:   
 

E = 0 
E = −1/16 
E = −1/9 

E = −1 

E = −1/4 

l = 0  

 
The energy   the levels are labeled nl,  n being the principal quantum number and the 
traditional notation for angular momentum l is given at the bottom of the diagram. The two red 
vertical arrows are the first two transitions in the spectroscopic Balmer series, four lines of which 
gave Bohr the clue that led to his model.  The corresponding series of transitions to the 1s ground 
state are in the ultraviolet, they are called the Lyman series. 

21/ ,E = − n

Wave Functions for some Low-n States 
From now on, we label the wave functions with the quantum numbers, ( ), ,nlm rψ θ φ , so the 

ground state is the spherically symmetric ( )100 rψ .  
 
For this state , where ( ) ( ) /R r u r r= ( ) ( )1

0
lu e w eρ wρρ ρ ρ ρ− + −= = , with w0 a constant, and 

1 0/r r aρ κ= = .   
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So, as a function of r, ( ) 0/
100

r ar Neψ −=  with N an easily evaluated normalization constant: 
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For n = 2, l = 1 the function ( )w ρ  is still a single term, a constant, but now 

,  and,  for n = 2, ( ) ( )1
0
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0/ 2r r aρ κ= = ,  remembering the energy-

dependence of κ.   
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routine, yielding  
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The wave functions for the other m-values, ( )21 1 , , ,rψ θ φ±  have the cosθ  in 210ψ  replaced by  

( )1/ 2 sin ie φθ ±∓  respectively (from the earlier discussion of the ’s). m
lY

 
The other n = 2 state has l = 0, so from n = k + l + 1, we have k = 1 and the series for w has two 
terms, k = 0 and k = 1,  the ratio being 
 

( )
( ) ( )( )

1 2 1
1

1 2 1
k

k

k l nw
w k k l

+ + + −
= = −

+ + +
 

 
for the relevant values: k = 0, l = 0, n = 2.  So ( ) ( )1 0 0,w w w w 1ρ ρ= − = − .  For n = 2, 

0/ 2r aρ = , the normalized wave function is 
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Note that the zero angular momentum wave functions are nonzero and have nonzero slope at the 
origin. This means that the full three dimensional wave functions have a slope discontinuity 
there!  But this is fine—the potential is infinite at the origin.  (Actually, the proton is not a point 
charge, so really the kink will be smoothed out over a volume of the size of the proton—a very 
tiny effect.)  
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General Solution of the Radial Equation 
In practice, the first few radial functions ( )w ρ  can be constructed fairly easily using the method 

presented above, but it should be noted that the differential equation for ( )w ρ  
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is in fact Laplace’s equation, usually written 
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where k, p are integers, and is a Laguerre polynomial  (Messiah, page 482).  ( )k

pL z
 
The two equations are the same if z = 2ρ,  and the solution to the radial equation is therefore  
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Quoting Messiah, the Laguerre polynomials ( )0

pL z , and the associated Laguerre polynomials 

are given by: ( )k
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(These representations can be found neatly by solving Laplace’s equation using – surprise – a 
Laplace transform.  See Merzbacher for details.)  The polynomials satisfy the orthonormality 
relations (with the mathematicians’ normalization convention)  
 

( ) 3

0

!
.

!
z k k k

p q pq

p k
e z L L dz

p
δ

∞
− +⎡ ⎤⎣ ⎦=∫  

 
But what do they look like?  The function  is zero at the origin (apart from the trivial case 

) and zero at infinity, always positive and having nonzero slope except at its maximum 
value, .  The p derivatives bring in p separated zeroes, easily checked by sketching the 
curves generated by successive differentiation.  Therefore, 

z pe z−

0p =
z p=

( )0
pL z , a polynomial of degree p, has 

p real positive zeroes, and value at the origin ( )0 0pL !p= , since the only nonzero term at z = 0 is 

that generated by all  p differential operators acting on . pz
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The associated Laguerre polynomial ( )k

pL z is generated by differentiating  k times.  

Now  has p + k  real positive zeroes, differentiating it gives a polynomial one degree 

lower, with zeroes which must be one in each interval between the zeroes of .  This 

argument remains valid for successive differentiations, so 
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p kL z+
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p kL z+
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pL z  must have p real separate 

zeroes.  
 
Putting all this together, and translating back from ρ  to r, the radial solutions are: 
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with N the normalization constant. Griffiths (page 141) gives more details, including the 
normalization constants worked out. We used those to plot the n = 3 states—plotting here the 

functions ( ) ( )u r rR r= , since the normalization is ( ) 2

0

4 1u r drπ
∞

( )=∫ , u r  gives a better idea of 

at what distance from the proton the electron is most likely to be found.  
 
Here are the three n = 3 radial wave functions:   

 
The number of nodes, the radial quantum number, is 3 − l − 1. (Note: The relative normalizations 
are correct here, but not the overall normalization.) 
 
For higher n values, the wave functions become reminiscent of classical mechanics.  for 
example, for n = 10, the highest angular momentum state probability distribution peaks at 

, the Bohr orbit radius: 0100r = a
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whereas for n = 10, l = 0, we find: 
 
 

 
 

Notice this peaks just below twice the Bohr radius.  This can be understood from classical 
mechanics: for an inverse square force law, elliptical orbits with the same semimajor axis have 
the same energy.  The l = n − 1 orbit is a circle, the l = 0 orbit is a long thin ellipse, so it extends 
almost twice as far from the origin as the circle.  Furthermore, the orbiting electron will spend 
longer at the far distance, since it will be moving very slowly. 
 
(Note: the normalizations in the above graphs are only approximate.) 
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