

Physics 2102 Lecture 1 Electric Charge

Version: 1/17/07

Charles-Augustin de Coulomb (1736-1806)

Who Am I?

Prof. Jonathan P. Dowling

1994–98: Research Physicist, US Army Aviation & Missile Command 1998–2004: Principal Scientist, NASA Jet Propulsion Laboratory 2004–Present: Director, Hearne Institute for Theoretical Physics, LSU

Office hours: Nicholson Annex 453, MWF 2:30-3:30pm (or by appointment)

Phone: 578-0887

Email: jdowling@lsu.edu

My Research: Quantum Optics Quantum Computing Photonic Crystals Hearne Institute for Theoretical Physics Quantum Sciences & Technologies Group

Course Details

• Class Website:

http://www.phys.lsu.edu/classes/spring2007/phys2102/ Syllabus, schedule, grade policy, ...

• Lectures will be posted in this sections' website: http://phys.lsu.edu/~jdowling/phys21024/

• Text:

Fundamentals of Physics, Halliday, Resnick, and Walker, 7th edition. We will cover chapters 21-36 in this class.

• Exams:

Three midterms: 08 FEB, 08 MAR, 12 APR Final Exam (cumulative): 10 MAY

• Quizzes:

Nearly every class.

Course details: Homework

Web-based system: Web Assign To register:

- Go to http://www.webassign.net/student.html
- On the left frame, "student login"
 - Username: lsuemail
 - *Institution*: lsu
 - *Password*: your SSN
- Choose "credit card registration" (\$8.50)

There will be one assignment per week due 2:00AM Tuesdays.

The first assignment will be posted later today.

Course details: Grading

What are we going to learn? A road map

- Electric *charge*
 - → Electric *force* on other electric charges
 - → Electric *field*, and electric *potential*
- Moving electric charges : current
- Electronic circuit components: batteries, resistors, capacitors
- Electric currents → Magnetic field
 → Magnetic force on moving charges
- Time-varying magnetic field → Electric Field
- More circuit components: inductors, AC circuits.
- Maxwell's equations → Electromagnetic waves → light waves
- Geometrical Optics (light rays).
- Physical optics (light waves): interference, diffraction.

Let's get started! Electric charges

- Two types of charges: positive/negative
- Like charges repel
- **Opposite charges attract**

Atomic structure :

- negative electron cloud
- nucleus of positive protons, uncharged neutrons

[[Why doesn't the nucleus fly apart?? Why doesn't the atom collapse??]]

Coulomb's law -- the force between point charges:

- Lies along the line connecting the charges.
- Is proportional to the magnitude of each charge.
- Is inversely proportional to the distance squared.
- Note that Newton's third law says $|F_{12}| = |F_{21}|!!$

Often, we write *k* as:

$$k = \frac{1}{4\pi\varepsilon_0} \text{ with } \varepsilon_0 = 8.85 \times 10^{-12} \frac{C^2}{Nm^2}$$

Electric charges in solids

- In macroscopic solids, nuclei often arrange themselves into a stiff regular pattern called a "lattice".
- Electrons move around this lattice. Depending on how they move the solid can be classified by its "electrical properties" as an insulator or a conductor.

•	•	•	•	0	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•

Charges in solids

- In a conductor, electrons move around freely, forming a "sea" of electrons. This is why metals conduct electricity.
- Charges can be "induced" (moved around) in conductors.

Blue background = mobile electrons

Red circles = static positive charge (nuclei)

Insulating solids

- In an insulator, each electron cloud is tightly bound to the protons in a nucleus. Wood, glass, rubber.
- Note that the electrons are not free to move throughout the lattice, but the electron cloud can "distort" locally.

How to charge an object

- An object can be given some "excess" charge: giving electrons to it (we give it negative charge) or taking electrons away (we "give" it positive charge).
- How do we do charge an object? Usually, moving charges from one surface to another by adhesion (helped by friction), or by contact with other charged objects.
- If a conductor, the whole electron sea redistributes itself.
- If an insulator, the electrons stay where they are put.

Electroscope

http://www.physicsclassroom.com/mmedia/estatics/esn.html

Van der Graaf generator

http://science.howstuffworks.com/vdg2.htm

http://www.amasci.com/emotor/vdg.html

Conservation of Charge

Total amount of charge in an isolated system is fixed ("conserved")

Example: 2 identical metal spheres have charges +1C and -2C.

You connect these together with a metal wire; what is the final charge distribution?

Quantization of Charge

- Charge is always found in **INTEGER** multiples of the charge on an electron/proton ([[*why*?]])
- Unit of charge: Coulomb (C) in SI units
- Electron charge = $-e = -1.6 \times 10^{-19}$ Coulombs
- Proton charge = $+e = +1.6 \times 10^{-19}$ Coulombs
- One cannot ISOLATE FRACTIONAL CHARGE (e.g. -0.8 x 10⁻¹⁹ C, +1.9 x 10⁻¹⁹ C, etc.) [[but what about quarks...?]]
- Unit of current: Ampere = Coulomb/second

Superposition

- Question: How do we figure out the force on a point charge due to many other point charges?
- Answer: consider one pair at a time, calculate the force (a vector!) in each case using Coulomb's Law and finally add all the vectors! ("superposition")
- Useful to look out for SYMMETRY to simplify calculations!

Example

- Three equal charges form an equilateral triangle of side 1.5 m as shown
- Compute the force on q₁
- What is the force on the other charges?

Solution: Set up a coordinate system, compute vector sum of F_{12} and F_{13}

Another example with symmetry

What is the force on central particle?

- Electric charges come with two signs: positive and negative.
- Like charges repel, opposite charges attract, with a magnitude calculated from **Coulomb's law**: $F=kq_1q_2/r^2$
- Atoms have a positive nucleus and a negative "cloud".
- Electron clouds can combine and flow freely in **conductors**; are stuck to the nucleus in **insulators**.
- •We can charge objects by transferring charge, or by induction.
- Electrical charge is **conserved**, and **quantized**.