

Physics 2102 Lecture 1

 Electric Charge

Version: 1/17/07

Who Am I?

Prof. Jonathan P. Dowling

1994-98: Research Physicist, US Army Aviation \& Missile Command 1998-2004: Principal Scientist, NASA Jet Propulsion Laboratory 2004-Present: Director, Hearne Institute for Theoretical Physics, LSU

Office hours: Nicholson Annex 453, MWF 2:30-3:30pm (or by appointment)

Phone: 578-0887

Email: jdowling@1su.edu
My Research:
Quantum Optics
Quantum Computing
Photonic Crystals
Hearne Institute for Theoretical Physics
Quantum Sciences \& Technologies Group

Course Details

- Class Website:
http://www.phys.lsu.edu/classes/spring2007/phys2102/
Syllabus, schedule, grade policy, ...
- Lectures will be posted in this sections' website: http://phys.Isu.edu/~jdowling/phys21024/
- Text:

Fundamentals of Physics, Halliday, Resnick, and Walker, 7th edition. We will cover chapters 21-36 in this class.

- Exams:

Three midterms: 08 FEB, 08 MAR, 12 APR
Final Exam (cumulative): 10 MAY

- Quizzes:

Nearly every class.

Course details: Homework

Web-based system: Web Assign
To register:

- Go to http://www.webassign.net/student.html
- On the left frame, "student login"
- Username: 1suemail
- Institution: lsu
- Password: your SSN
- Choose "credit card registration" (\$8.50)

There will be one assignment per week due 2:00AM Tuesdays.
The first assignment will be posted later today.

Course details: Grading

A
$>88 \%$

D
$60-50 \%$
F
<50\%

What are we going to learn? A road map

- Electric charge
\rightarrow Electric force on other electric charges
\rightarrow Electric field, and electric potential
- Moving electric charges : current
- Electronic circuit components: batteries, resistors, capacitors
- Electric currents \rightarrow Magnetic field
\rightarrow Magnetic force on moving charges
- Time-varying magnetic field \rightarrow Electric Field
- More circuit components: inductors, AC circuits.
- Maxwell's equations \rightarrow Electromagnetic waves \rightarrow light waves
- Geometrical Optics (light rays).
- Physical optics (light waves): interference, diffraction.

Let's get started! Electric charges

- Two types of charges: positive/negative
- Like charges repel
- Opposite charges attract

Atomic structure :

- negative electron cloud
- nucleus of positive protons, uncharged neutrons
[/Why doesn't the nucleus fly apart??
Why doesn't the atom collapse??]]
 charges: Coulomb's law

$$
F_{12} \longleftarrow+q_{1}
$$

or

$$
+q_{2} \bigcirc \longrightarrow F_{21}
$$

Coulomb's law -- the force between point charges:

- Lies along the line connecting the charges.
- Is proportional to the magnitude of each charge.
- Is inversely proportional to the distance squared.
- Note that Newton's third law says $\left|\mathrm{F}_{12}\right|=\left|\mathrm{F}_{21}\right|$!!

Coulomb's law

$$
\begin{aligned}
& +q_{1} \longrightarrow F_{12} F_{21} \longleftrightarrow-q_{2} \\
& \left|F_{12}\right|=\frac{k\left|q_{1}\right|\left|q_{2}\right|}{r_{12}^{2}} \quad \begin{array}{l}
\text { For charges in a } \\
\text { VACUUM }
\end{array} \quad \begin{array}{l}
\mathrm{k}=8.99 \times 10^{9} \frac{N m^{2}}{C^{2}}
\end{array}
\end{aligned}
$$

Often, we write k as:

$$
k=1 / 4 \pi \varepsilon_{0} \text { with } \varepsilon_{0}=8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{Nm}^{2}}
$$

Electric charges in solids

- In macroscopic solids, nuclei often arrange themselves into a stiff regular pattern called a "lattice".
- Electrons move around this lattice. Depending on how they move the solid can be
 classified by its "electrical properties" as an insulator or a conductor.

Charges in solids

- In a conductor, electrons move around freely, forming a "sea" of electrons. This is why metals conduct electricity.
- Charges can be "induced" (moved around) in conductors.

Blue background = mobile electrons

Red circles = static positive charge (nuclei)

Insulating solids

- In an insulator, each electron cloud is tightly bound to the protons in a nucleus. Wood, glass, rubber.
- Note that the electrons are not free to move throughout the lattice, but the electron cloud can "distort" locally.

How to charge an object

- An object can be given some "excess" charge: giving electrons to it (we give it negative charge) or taking electrons away (we "give" it positive charge).
- How do we do charge an object? Usually, moving charges from one surface to another by adhesion (helped by friction), or by contact with other charged objects.
- If a conductor, the whole electron sea redistributes itself.
- If an insulator, the electrons stay where they are put.

Electroscope

http://www.physicsclassroom.com/mmedia/estatics/esn.html

Van der Graaf generator

(4) Output terminal - An aluminum or steel sphere

B Upper brush - A piece of fine metal wire
© Upper roller - A piece of nylon
D Belt - A piece of surgical tubing
(e) Motor
© Lower brush
O Lower roller - A piece of nylon covered with silicon tape

http://science.howstuffworks.com/vdg2.htm

http://www.amasci.com/emotor/vdg.html

Conservation of Charge

Total amount of charge in an isolated system is fixed ("conserved")

Example: 2 identical metal spheres have charges
+1 C and -2 C .

You connect these together with a metal wire; what is the final charge distribution?

Quantization of Charge

- Charge is always found in INTEGER multiples of the charge on an electron/proton ([[why?]])
- Unit of charge: Coulomb (C) in SI units
- Electron charge $=-e=-1.6 \times 10^{-19}$ Coulombs
- Proton charge $=+e=+1.6 \times 10^{-19}$ Coulombs
- One cannot ISOLATE FRACTIONAL CHARGE (e.g. $-0.8 \times 10^{-19} \mathrm{C},+1.9 \times 10^{-19} \mathrm{C}$, etc.) [[but what about quarks...?]]
- Unit of current: Ampere = Coulomb/second

Superposition

- Question: How do we figure out the force on a point charge due to many other point charges?
- Answer: consider one pair at a time, calculate the force (a vector!) in each case using Coulomb's Law and finally add all the vectors! ("superposition")
- Useful to look out for SYMMETRY to simplify calculations!

Example

$$
q_{1}=q_{2}=q_{3}=20 \mu \mathrm{C}
$$

- Three equal charges form an equilateral triangle of side 1.5 m as shown
- Compute the force on q_{1}
- What is the force on the other charges?

Solution: Set up a coordinate system, compute vector sum of F_{12} and F_{13}

Another example with symmetry

Charge $+\mathbf{q}$ placed at center

What is the force on central particle?

Summary

- Electric charges come with two signs: positive and negative.
- Like charges repel, opposite charges attract, with a magnitude calculated from Coulomb's law: $\mathrm{F}=\mathrm{kq}_{1} \mathrm{q}_{2} / \mathrm{r}^{2}$
- Atoms have a positive nucleus and a negative "cloud".
- Electron clouds can combine and flow freely in conductors; are stuck to the nucleus in insulators.
-We can charge objects by transferring charge, or by induction.
- Electrical charge is conserved, and quantized.

