
PHYS 7221 - The Three-Body Problem
Special Lecture: Wednesday October 11, 2006, Juhan Frank, LSU

1 The Three-Body Problem in Astronomy

The classical Newtonian three-body gravitational problem occurs in Nature exclusively in an as-
tronomical context and was the subject of many investigations by the best minds of the 18th and
19th centuries. Interest in this problem has undergone a revival in recent decades when it was real-
ized that the evolution and ultimate fate of star clusters and the nuclei of active galaxies depends
crucially on the interactions between stellar and black hole binaries and single stars. The general
three-body problem remains unsolved today but important advances and insights have been enabled
by the advent of modern computational hardware and methods.
The long-term stability of the orbits of the Earth and the Moon was one of the early concerns when
the age of the Earth was not well-known. Newton solved the two-body problem for the orbit of
the Moon around the Earth and considered the effects of the Sun on this motion. This is perhaps
the earliest appearance of the three-body problem. The first and simplest periodic exact solution
to the three-body problem is the motion on collinear ellipses found by Euler (1767). Also Euler
(1772) studied the motion of the Moon assuming that the Earth and the Sun orbited each other
on circular orbits and that the Moon was massless. This approach is now known as the restricted
three-body problem. At about the same time Lagrange (1772) discovered the equilateral triangle
solution described in Goldstein (2002) and Hestenes (1999). The collinear and equilateral triangle
solutions are the only explicit solutions known for arbitrary masses and a handful of solutions for
special cases are also known (Montgomery 2001).
The basis for the modern theory of the restricted three-body problem was developed by Jacobi
(1836), Delaunay (1860), and Hill (1878). The classical period ends with the powerful methods of
surfaces of section, phase space and deterministic chaos developed by Poincaré who was awarded
in 1889 the prize established by Sweden’s King Oscar II for the first person to solve the n-body
problem. Although, strictly speaking, Poincaré did not solve the general 3-body problem, let alone
the n-body problem, his insights influenced much of the work that followed.
I will review some of the known exact solutions valid for special cases, sketch out a few aspects of the
restricted three-body problem and conclude by discussing some numerical results and astrophysical
applications.

2 The General Three-Body Problem

Just as in the two-body problem it is most convenient to work in the center-of-mass (CM) system
with xi denoting the position of mass mi. The Newtonian equations of motion in this system are of
the form

ẍi = −Gmj
xi − xj

|xi − xj |3 −Gmk
xi − xk

|xi − xk|3 (1)

where i, j, k stand for 1, 2, 3 and the two ordered permutations of these indexes. These three second-
order vector differential equations are equivalent to 18 first order scalar differential equations. The
CM condition and its first derivative

i=3∑

i=1

mixi = 0 (2)
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i=3∑

i=1

miẋi = 0 (3)

are 6 constraints that reduce the order of the system to 12. In the absence of external forces and
torques, the energy and angular momentum are conserved quantities or integrals of the motion.
These further reduce the order of the system to 12− 4 = 8. As in the two-body problem, one could
eliminate the time and reduce the order by one, and using an analog procedure to fixing the line of
nodes, reduce it again to 6. Even if the motion was restricted to a plane fixed in space, the order is
reduced to 4 which is still unsolvable in general.

Figure 1: Position vectors in the CM system and relative position vectors for the three-body problem
(Hestenes 1987).

In 1973 Broucke & Lass realized that the equations of motion could be written in a more symmetrical
form by using the relative position vectors si = xj −xk, labeled in such a way that the si is the side
opposite to the vertex of the triangle containing the mass mi (see Fig. 1) and that

s1 + s2 + s3 = 0. (4)

In terms of these relative position vectors, the equations of motion (1) adopt the symmetrical form

s̈i = −GM
si

s3
i

+ miG, (5)

where M = m1 + m2 + m3 is the total mass and the vector G is given by

G =
i=3∑

i=1

si

s3
i

(6)

Note that the first term on the r.h.s of (5) is identical to what one gets in the standard treatment
of the two-body Kepler problem, which admits conic sections as orbital solutions. It is the second
term that is responsible for the difficulty in this problem since it couples the equations for the si.

3 Euler’s Solution

If all particles are collinear, all the vectors si, xi and G are proportional to one another. Without
loss of generality let’s suppose that m2 lies in between the other two masses. Then s3 points from
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m1 to m2, s1 points in the same direction and sense as s3 from m2 to m3, and s2 points back from
m3 to m1. Therefore, we can write

s1 = λs3, s2 = −(1 + λ)s3, (7)

where λ is a positive scalar. Expressing everything in the equations of motion in terms of s3 and
lambda, one obtains after some algebra (see Hestenes 1987 for details) a fifth degree polynomial in λ
with one single positive real root which is a function of the three masses; and, s3 obeys a two-body
equation of the form

s̈3 = −m2 + m3(1 + λ)−2

m2 + m3(1 + λ)
GMs3

s3
3

. (8)

Thus the particles move along confocal ellipses of the same eccentricity (i.e. similar ellipses) and the
same orbital period around the common center of mass, always lined up and separated by distances
obeying eq. (7). This describes one family of solutions. The other two families can be found by
putting one of the other particles in the middle. On a sober note, these collinear solutions are not
realized in nature because they are unstable to small perturbations.

Figure 2: Euler’s collinear solution for masses in the ratio m1 : m2 : m3 = 1 : 2 : 3 (Hestenes 1987).

4 Lagrange’s Solution

This case is realized when G = 0 and the equations for the si decouple. The three decoupled
equations have the two-body form whose solutions are ellipses for bound cases. The condition for
G = 0 is that s1 = s2 = s3, in other words the particles sit at the vertexes of an equilateral triangle
at all times, even as this triangle changes size and rotates (see Fig. 3). Each particle follows an
ellipse of the same eccentricity but oriented at different angles, with the common center of mass at
the focal point of all three orbits. The motion is periodic with the same period for all three particles.
The Lagrange solution is stable only if one of the three masses is much greater than the other
two. Montgomery (2001) describes several other solutions that exist when all the particles have the
same mass, e.g. a figure-eight solution for 3 particles, which is stable, and even more complicated
solutions with up to eleven (!) particles. Although these exact solutions are fun, they are of very
little practical importance since they require very special initial conditions to be realized.

5 The Pythagorean Problem

Burrau (1913) considered a well defined but arbitrarily selected initial configuration of three bodies of
masses 3, 4 and 5 placed at the corners of a Pythagorean triangle facing sides of length proportional
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Figure 3: Lagrange’s equilateral triangle solution for masses in the ratio m1 : m2 : m3 = 1 : 2 : 3
(Hestenes 1987).

to each mass. The initial configuration is shown on Fig. 4. The masses are at rest initially and
begin to move due their mutual attraction. After a very complex interaction, the two heavier masses
bind in a stable binary while the light object escapes, and all particles recede without limit from
the common center of mass. Fig. 5 shows the time-development of the orbital paths of the three

P1 (1, 3)

m1 = 3

P2 (−2, −1)

m2 = 4

P3 (1, −1)

m3 = 5

Figure 4: Initial configuration for Burrau’s pythagorean problem shown in the CM reference frame.
The masses are in the ratios m1 : m2 : m3 = 3 : 4 : 5 and are released from rest (Valtonen &
Karttunen 2006).

particles. This behavior turns out to be quite common when three particles of roughly comparable
masses are allowed to interact gravitationally with randomly selected initial conditions. Modern
computer experiments have explored the outcomes of hundreds of thousands of initial configurations
and have allowed the development of a statistical understanding of the interactions between three
particles, of a binary with a third object and of binaries with binaries.

6 The Restricted Three-Body Problem: Roche’s Potential

We illustrate the standard techniques involved in the restricted three-body problem by considering
the motion of gas, or alternatively non-interacting particles, in and around an interacting binary
with a circular orbit (adapted from Frank, King & Raine 2002). Non-interacting particles feel the
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Figure 5: Trajectories for Burrau’s pythagorean problem shown in the CM reference frame. The last
two panels are identical since both the binary and the light particle have left the frame (Valtonen
& Karttunen 2006).

“external” gravity of the stars but do not interact with each other. The motion of gas is subject
to pressure gradient forces in addition to gravity of the stars. The mass of the particles or fluid
elements is almost always negligible compared to the masses of the binary components and thus
induces negligible accelerations on the stars. Under these conditions the binary components orbit
the common center of mass on circular orbits of constant radius and will be at rest in a suitably
chosen corotating frame.
Any gas flow between the two stars is governed by the Euler equation:

dv
dt

=
∂v
∂t

+ (v · ∇)v = −∇Φ− 1
ρ
∇P, (9)

5



where Φ is the gravitational potential of the stars. For non-interacting particles we drop the pressure
gradient and advective terms and integrate directly v̇ following the particle’s motion.
It is convenient to write this in a frame of reference rotating with the binary system, with angular
velocity ω relative to an inertial frame, since in the rotating frame the two stars are fixed. This
introduces extra terms in the Euler equation to take account of centrifugal and Coriolis forces. With
the assumptions made for the Roche problem, the Euler equation takes the form

∂v
∂t

+ (v · ∇)v = −∇ΦR − 2ω ∧ v − 1
ρ
∇P, (10)

with the angular velocity of the binary, ω, given in terms of a unit vector, e, normal to the orbital
plane by

ω =
[
GM

a3

]1/2

e.

The term −2ω∧v is the Coriolis force per unit mass; −∇ΦR includes the effects of both gravitation
and centrifugal force. ΦR is known as the Roche potential (Fig. 6) and is given by

ΦR(r) = − GM1

|r− r1| −
GM2

|r− r2| −
1
2
(ω ∧ r)2 (11)

where r1, r2 are the position vectors of the centres of the two stars. We gain considerable insight
into accretion problems by plotting the equipotential surfaces of ΦR and, in particular, their sections
in the orbital plane (Fig. 7). When doing this, we must be careful to remember that some of the
forces, in particular the Coriolis forces, acting on the accreting gas are not represented by ΦR.
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Figure 6: A surface representing the Roche potential for a binary system with mass ratio q =
M2/M1 = 0.25 (the same as in Fig. 7). The larger pit is around the more massive star. The
downward curvature near the edges is due to the ‘centrifugal’ term; a test particle attempting to
corotate with the binary at these distances experiences a net outward force.
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The shape of the equipotentials is governed entirely by the mass ratio q, while the overall scale is
given by the binary separation a. Figure 7 is drawn for the case q = 0.25, but its qualitative features
apply for any mass ratio. Matter orbiting at large distances (r À a) from the system sees it as a
point mass concentrated at the centre of mass (CM). Thus, the equipotentials at large distances are
just those of a point mass viewed in a rotating frame. Similarly, there are circular equipotential
sections around the centres of each of the two stars (r1, r2); the motion of matter here is dominated
by the gravitational pull of the nearer star. Hence, the potential ΦR has two deep valleys or pits
centred on r1, r2. The most interesting and important feature of Fig. 7 is the figure-of-eight area
(the heavy line), which shows how these two valleys are connected. In three dimensions, this ‘critical
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Figure 7: Sections in the orbital plane of the Roche equipotentials ΦR = constant, for a binary
system with mass ratio q = M2/M1 = 0.25. Shown are the center of mass (CM) and Lagrange
points L1–L5. The equipotentials are labeled 1–7 in order of increasing ΦR. Thus the saddle point
L1 (the inner Lagrange point) forms a ‘pass’ between the two ‘Roche lobes’, the two parts of the
figure-of-eight equipotential 3. The Roche lobes are roughly surfaces of revolution about the line of
centers M1–M2. L4 and L5 (the ‘Trojan asteroid’ points) are local maxima of ΦR but Coriolis forces
stabilize synchronous orbits of test bodies at these points.
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surface’ has a dumbbell shape; the part surrounding each star is known as its Roche lobe. The lobes
join at the inner Lagrange point L1, which is a saddle point of ΦR; to continue the analogy, L1 is
like a high mountain pass between two valleys. This means that material inside one of the lobes
in the vicinity of L1 finds it much easier to pass through L1 into the other lobe than to escape the
critical surface altogether.
The two off-axis Lagrange points L4 and L5 are local maxima of the effective potential, and are
unstable at first sight. However, Coriolis forces act to confine the orbits of particles released in the
vicinity of these points. A more careful treatment shows that orbits around L4 and L5 are stable
provided that (M1 −M2)/M > (23/27)1/2 (Hestenes 1987) or q < 0.04. It also turns out that the
collinear saddle points L1, L2 and L3 are capable of supporting stable quasi-periodic orbits known
as “halo” orbits. In fact, several of the best known past and future NASA missions were or are
planned to go on libration orbits around L1 (SOHO, LISA) and L2 (WMAP, NGST).
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