
Phys 7221, Fall 2006: Midterm exam

October 20, 2006

Problem 1 (40 pts)

Consider a spherical pendulum, a mass m attached to a rod of length l, as a constrained
system with |~r| = l, as shown in the figure.

a) (15 pts) What are the conserved quantities of the system, and symmetries
associated with each?

Since there are no dissipative forces, and the gravitational potential does not depend
on velocities, the energy will be conserved. The conservation of energy is associated
with the Lagrangian not being explicitly dependent on time.

There is a rotational symmetry about a vertical axis through the suspension point, so
the z component of the angular momentum is conserved. This is because the tension
does not produce a torque, and the gravitational torque only has x, y components
(because the gravitational force is vertical). Since is no torque in the z direction,
N = L̇ means that L̇z = Nz = 0.

The gravitational force breaks the symmetry in z, and the suspension point breaks
the symmetry in all three directions, so no components of the linear momentum are
conserved. The gravitational force has a z component, and the tension will have in
general all three components (unless it is a planar pendulum), so F = Ṗ means no
component of P is constant.
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b) (30 pts) Find out an expression for the tension in the rod using the method
of Lagrange multipliers.

We write the Lagrangian in terms of all three spherical coordinates r, φ, θ:

L =
1
2
m(ṙ2 + r2θ̇2 + r2 sin2 θφ̇2) + mgr cos θ

The constraint, associated with a multiplier λ, is

f(r) = r − l = 0

There are three Lagrange’s equations, plus the constraint, making a set of four equa-
tions for the four unknowns, qi = {r, θ, φ}, and λ:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= λ

∂f

∂qi

The equation for r is the one involving λ. We use the solution to the constraint,
r = l, ṙ = 0 in the equation:

d

dt

∂L

∂ṙ
− ∂L

∂r
= λ

∂f

∂r

−ml(θ̇2 + φ̇2 sin2 θ)−mg cos θ = λ

The multiplier λ is the force of constraint in the direction er, or minus the tension:

T = −λ = mlθ̇2 + mlφ̇2 sin2 θ + mg cos θ

For a planar pendulum, φ̇ = 0 and we recover the usual expression, T = mlθ̇2 +
mg cos θ. For small angular displacements, θ � 1, and T ≈ mg.
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Problem 2 (40 pts)

Consider an orbiting system with an orbit of the form r(θ) = 1/(u0 + u1 cos(3θ/2)), with
0 < u1 < u0.

a) (10 pts) Draw the orbit in the physical x = r cos θ, y = r sin θ axes, for
0 < θ < 4π. Is the orbit bound? Is it closed?

The figure shows of the orbit r(θ) = 1/(u0 + u1 cos(3θ/2)), in blue. The black circles
have radii 1/(u0−u1), 1/u0, 1/(u0 +u1). The red point indicates the point with θ = 0, r =
1/(u0 + u1), and also θ = 4π, r = 1/(u0 + u1).

The orbit is bound, enclosed within a circle of radius rmax = 1/(u0 − u1). The orbit
is also closed: when θ = 4π (after two turns about the origin), r(4π) = r(0) = rmin =
1/(u0 + u1).

b) (15 pts) Find out the potential V (r) that produces this orbit.
We use the orbit equation in terms of u(θ) = 1/r(θ) = u0 + u1 cos(3θ/2):

−m

l2
dV

du
=

d2u

dθ2
+ u = −u1

(
3
2

)2

cos(3θ/2) + u0 + u1 cos(3θ/2)

= u0 −
5
4
u1 cos(3θ/2) = −5

4
(u0 + u1 cos(3θ/2)) +

9
4
u0

= −5
4
u +

9
4
u0

dV

du
=

5l2

4m
u− 9l2u0

4m

V (u) =
5l2

8m
u2 − 9l2u0

4m
u

V (r) =
k1

r2
− k0

r

The potential has an attractive “Kepler term” −k0/r, and a repulsive term k1/r2. This
particular orbit has initial conditions given by u0l

2 = 4k0m/9, l2 = 8k1m/5.

3



c) (15 pts) Draw a diagram of the effective potential Veff(r). Describe qual-
itatively the possible orbits, depending on values of the angular momentum
and the energy of the system. Identify the orbit described in part (a).

The effective potential is Veff(r) = V (r) + l2/2mr2 = −k0/r + (k1 + l2/2m)/r2, qual-
itatively similar to the effective potential of a Kepler potential, but with the minimum
potential at a different radial coordinate. Systems will have a minimum energy E0; sys-
tems with exactly that energy will have circular orbits with r = r0 = 2(k1 + l2/2m)/k0.

Like Kepler’s orbits, orbits of this potential will be unbound, with a turning point, for
positive energy (like E1 in the figure); and bound with two turning points for negative
energy (like E2 in the figure). Unlike Kepler’s orbits, the orbits are not ellipses and hyper-
bolas, since the orbit equation is different. The orbit in part (a) has negative energy like
E2, with a minimum and a maximum radial coordinate.

Unlike Kepler’s potential, the effective potential is qualitative the same even for zero
angualr momentum (colinear motion). The orbits in this potential for head-on approach
of two masses are still bound even if they have negative energy: the repulsive term k1/r2

overcomes the attractive term −k0/r, and avoids a collision, but the attractive force is
strong enough to keep the masses bound (in Kepler’s potential, the masses collide with
each other when r = 0). Orbits with zero angular momentum and positive energy are
unbound, with a turning point: if the masses are initially moving towards each other, they
will reach a minimum distance from each other, and then move away; in Kepler’ potential,
systems with positive energy will have the masses either colliding, or moving away from
each other for ever, depending on the initial conditions.
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Problem 3 (20 pts)

Consider a particle of mass m and velocity v0, approaching from infinity a particle of equal
mass m, with impact parameter s. The only forces between the masses are gravitational
forces.

a) (6 pts) What’s the energy and angular momentum of the system, before and
after the collision?

since the system has angular momentum, there will not be a collision: the masses
will reach a minimum distance, and will then move away from each other.

At infinite distance, the potential is zero, and the total energy is the kinetic energy
of the moving particle, E = (1/2)mv2

0.

Taking the origin of an inertial system at the position of the target particle initially
at rest, and a coordiante system as in the figure, the angular momentum is L =
r0 × p0 = (−x, s, 0)×m(v0, 0, 0) = (0, 0,mv0s).

The energy and the angular momentum are conserved, so they will have the same
values at all times.

b) (14 pts) Sketch the trajectory of the two particles in the laboratory system
shown in the figure, and the trajectory of the center of mass. Indicate in
the figure the scattering angle ϑ.

The relative distance between the particles will be a hyperbola about the initial
position of the target particle. If the target particle has a much larger mass than the
scattered particle, that will also be the approximate trajectory of the approaching
particle. In this case, since the masses are equal, the target particle will also move
significantly.
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The center of mass of the system moves with constant velocity V = v0/2, with
a constant y-coordinate s/2, and has the red trajectory shown in the figure. The
vector r, the relative distance r = r1 − r2, has a hyperbolic trajectory about the
origin, with initial position (s,−∞) and initial velocity (v0, 0). The approaching
particle will have a position vector r1 = R + r/2, which is similar to a hyperbola:
this is the blue trajecotry in the figure. Since the total momentum is constant, has
horizontal velocity, and the scateered particle is moving down and to the right, we
know that the target particle will move up, so that v1 + v2 is horizontal: this is the
black trajectory in the figure.

If the initial velocity is small, the particles may whirl around a few turns before
moving away, in about the same directions as shown here.
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