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Prob 6-4: Double Pendulum

We follow the conventions for angles in Figure 1.4 (notice that θ1 is counterclockwise, and
θ2 is clockwise!). We set up a coordinate system with the origin at the top suspension
point, the x-axis pointing towards the right and the y-vertical axis pointing down. We will
use the angles θ1, θ2 as the generalized coordinates for the system. We are then looking
for two normal modes, with eigenfrequencies satisfying the equation |V − ω2

kT| = 0, and
eigenvectors a1 = (a11, a12) and a2 = (a21, a22), that satisfy the equation (V−ω2

kT)·ak = 0.
We first find expressions for the kinetic and potential energy matrices T and V.
The position vector of each mass is

r1 = (x1, y1) = l(sin θ1, cos θ1)
r2 = (x2, y2) = r1 + l(− sin θ2, cos θ2) = l(sin θ1 − sin θ2, cos θ1 + cos θ2)

The velocity vectors are

v1 = (ẋ1, ẏ1) = lθ̇1(cos θ1,− sin θ1)
v2 = (ẋ2, ẏ2) = lθ̇1(cos θ1,− sin θ1)− lθ̇2(cos θ2, sin θ2)

The kinetic energy is

T =
1
2
m1v

2
1 +

1
2
m2v

2
2

=
1
2
m1l

2θ̇2
1 +

1
2
l2
(
θ̇2
1 + θ̇2

2 − 2θ̇1θ̇2 cos(θ1 + θ2)
)

=
1
2
(m1 + m2)l2θ̇2

1 +
1
2
l2θ̇2

2 − l2θ̇1θ̇2 cos(θ1 + θ2)

For small oscillations, we use θ̇1θ̇2 cos(θ1 + θ2) ≈ θ̇1θ̇2, and then the (non-diagonal!)
kinetic energy matrix is

T = l2
(

m1 + m2 −m2

−m2 m2

)
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The gravitational potential energy is

V = −m1gy1 −m2gy2

= −m1gl cos θ1 −m2gl(cos θ1 + cos θ2)
= −(m1 + m2)gl cos θ1 −m2gl cos θ2

≈ −(m1 + 2m2)gl +
1
2
(m1 + m2)glθ2

1 +
1
2
m2glθ2

2

and the (diagonal!) potential energy matrix is

V = gl

(
m1 + m2 0

0 m2

)
The secular equation for the eigenfrequencies is

0 =
∣∣V − ω2T

∣∣
= l2

∣∣∣∣ (m1 + m2)(ω2
0 − ω2) m2ω

2

m2ω
2 m2(ω2

0 − ω2)

∣∣∣∣
= (m1 + m2)m2(ω2

0 − ω2)2 − ω4m2

= m2

(
m1ω

4 − 2(m1 + m2)ω2
0ω

2 + ω4
0(m1 + m2)

)
where we have defined ω2

0 = g/l.
The solutions are

w2
± = ω2

0

m1 + m2

m1

(
1±

√
m2

m1 + m2

)
= ω2

0

(
1 +

m2

m1
±

√
(m1 + m2)m2

m2
1

)

The equations for the normal modes are (V − ω2
±T) · a± = 0, with a± = (a±1, a±2).

We can only get a solution for the ratio of the vector components:

−m2ω
2
±a±2 = (m1 + m2)(ω2

0 − ω2
±)a±1

ω2
±

a±2

a±1

=
m1 + m2

m2
ω2

0

(
m2

m1
±

√
(m1 + m2)m2

m2
1

)

= ±m1 + m2

m2
ω2

0

√
(m1 + m2)m2

m2
1

(
1±

√
m2

m1 + m2

)
a±2

a±1

= ±
√

m1 + m2

m2

Thus, up to a normalization constant a±, the modes are

a± = a±

(
1,±

√
m1 + m2

m2

)
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We normalize the normal modes so that ã± ·T · a± = 1, so

1 = a2
±(m1 + m2 + m2

m1 + m2

m2
) = 2(m1 + m2)a2

±

and

a± =
1√
2

(
1√

m1 + m2
,± 1
√

m2

)
Since the normal modes represent the solutions for the angles θ1, θ2 in each case, we

see than the lower frequency mode has angles with opposite sign, and according to our
convention has then the two masses moving “in phase”; the higher frequency mode has the
angles with the same sign, which means the masses are “out of phase”.

Beats

The general motion of the system is given by a combination of the normal modes:

θ1(t) =
1√

2(m1 + m2)
(C+ cos(ω+t + φ+) + C− cos(ω−t + φ−))

θ2(t) =
1√
2m2

(C+ cos(ω+t + φ+)− C− cos(ω−t + φ−))

where the constants C±, φ± are chosen according to the initial conditions of the system. If
the system is set in motion pulling the top mass slightly away from vertical and releasing
it from rest, the initial conditions are θ1(0) = θ0, θ2(0) = 0, θ̇1(0) = 0, θ̇2(0) = 0:

θ1(0) = θ0 =
C+ cos φ+ + C− cos φ−√

2(m1 + m2)

θ2(0) = 0 =
C+ cos φ+ − C− cos φ−√

2m2

θ̇1(0) = 0 = −ω+C+ sinφ+ + ω−C− sinφ−√
2(m1 + m2)

θ̇2(0) = 0 = −ω+C+ sinφ+ − ω−C− sinφ−√
2m2

The velocity conditions are solved by φ+ = φ− = 0; then the condition θ2(0) = 0 tells us
that C+ = C− = C. Finally, the θ1(0) = θ0 condition tells us that C = θ0

√
m1 + m2/

√
2,

and the motion is

θ1(t) =
1√

2(m1 + m2)
(C+ cos(ω+t + φ+) + C− cos(ω−t + φ−))

=
θ0

2
(cos(ω+t) + cos(ω−t))
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θ2(t) =
1√
2m2

(C+ cos(ω+t + φ+)− C− cos(ω−t + φ−))

=
θ0

2

√
m1 + m2

m2
(cos(ω+t)− cos(ω−t))

It is convenient to describe the motion in terms of the sum and difference of the eigen-
frequencies: we define ω̄ = (ω+ + ω−)/2 and ∆ω = (ω+ − ω−)/2. Then, ω± = ω̄ ± ∆ω
and

cos(ω+t)± cos(ω−t) = cos(ω̄t + ∆ωt)± cos(ω̄t−∆ωt)
= (1± 1) cos(ω̄t) cos(∆ωt)− (1∓ 1) sin(ω̄t) sin(∆ωt)

The solutions for θ1, θ2 are then

θ1(t) = θ0 cos(ω̄t) cos(∆ωt)

θ2(t) = −θ0

√
m1 + m2

m2
sin(ω̄t) sin(∆ωt)

Since ω̄ > ∆ω, the solutions can be considered oscillations at the higher frequency ω̄,
with a periodic amplitude modulation with frequency ∆ω. The amplitude modulation for
θ1, θ2 is 90o out of phase, so when the amplitude of the oscillation is zero for θ1 (when
t = (2n + 1)π/2∆ω), the amplitude modulation for θ2 will be maximum: this is the
phenomenon of ”beats”. If the eigenfrequencies are very close, the beat frequency is very
low; if the eigenfrequencies are very different, the beat frequency is very high. If m1 = m2,
the eigenfrequencies are ω2

± = ω2
0(2 ±

√
2), ω̄ = 1.31ω0, and ∆ω = 0.54ω0: beats happen

approximately once every two and a half cycles of ω̄.

Limiting cases: m1 � m2 and m1 � m2

If m1 � m2, the eigenfrequencies are

w± = ω2
0

m1 + m2

m1

(
1±

√
m2

m1 + m2

)
≈ ω2

0

(
1±

√
m2

m1

)
only slightly different than the pendulum frequency of the top mass alone. The eigenmodes
are

a± =
1√
2

(
1√

m1 + m2
,± 1
√

m2

)
≈ 1√

2

(
1

√
m1

,± 1
√

m2

)
showing that θ2 � θ1 and the lower string remains approximately vertical.

If m1 � m2, the eigenfrequencies are

w± = ω2
0

m1 + m2

m1

(
1±

√
m2

m1 + m2

)
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= ω2
0

m2

m1

(
1 +

m1

m2

)(
1±

√
1

1 + m1/m2

)

≈ ω2
0

m2

m1

(
1 +

m1

m2

)(
1±

(
1− 1

2
m1

m2

))
ω2

+ ≈ 2ω2
0

m2

m1

ω2
− ≈ 1

2
ω2

0 =
g

2l

As m1/m2 vanishes, the lower frequency is that one of a simple pendulum of length 2l,
and the higher frequency approaches ∞. The normal modes are

a± =
1√
2

(
1√

m1 + m2
,± 1
√

m2

)
≈ 1√

2m2
(1,±1)

showing that the low frequency mode has θ1 ≈ −θ2, with the two strings almost aligned
(like in a simple pendulum); the high frequency mode has θ1 ≈ θ2, which has the bottom
mass almost at rest, and the top (lighter) mass oscillating at high frequency.

Problem 6-8,9: Right triangle molecule

We will use generalized coordinates measuring the deviation from equilibrium of each mass:

r1 = (x1, y1)
r2 = (l + x2, y2)
r3 = (x3, l + y3)

The kinetic energy will be

T =
1
2
m(ẋ2

1 + ẏ2
1 + ẋ2

2 + ẏ2
2 + ẋ2

3 + ẏ2
3)

so the kinetic energy matrix is the mass times the identity matrix: T = mI.
The potential energy has three terms, one from each spring. For small oscillations, we

wil assume xi, yi � l.
The potential energy of the spring along the x-axis is

V12 =
1
2
k(|r2 − r1| − l)2

|r2 − r1| =
√

(l + x2 − x1)2 + (y2 − y1)2

= l

√
1 + 2

x2 − x1

l
+

(x2 − x1)2 + (y2 − y1)2

l2
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≈ l

(
1 +

x2 − x1

l

)
≈ l + x2 − x1

V12 ≈ 1
2
k(x2 − x1)2

Similarly,

V13 =
1
2
k(y3 − y1)2

For the spring in the x-y plane, the potential energy is

V23 =
1
2
k(|r3 − r2| −

√
2l)2

|r3 − r2| =
√

(x3 − x2 − l)2 + (l + y3 − y3)2

≈
√

2l

√
1− x3 − x2

l
+

y3 − y2

l

≈
√

2l

(
1− 1

2
x3 − x2

l
+

1
2

y3 − y2

l

)
≈

√
2l − x3 − x2√

2
+

y3 − y2√
2

V13 ≈ 1
4
k(x3 − x2)2 +

1
4
k(y3 − y2)2 −

1
2
k(x3 − x2)(y3 − y2)

The total potential energy is then

V ≈ 1
2
k(x2 − x1)2 +

1
2
k(y3 − y1)2 +

1
4
k(x3 − x2)2 +

1
4
k(y3 − y2)2 −

1
2
k(x3 − x2)(y3 − y2)

and the potential energy matrix, a 6x6 matrix for x1, y1, x2, y2, x3, y3 is

V = k



1 0 −1 0 0 0
0 1 0 0 0 −1
−1 0 3/2 −1/2 −1/2 1/2
0 0 −1/2 1/2 1/2 −1/2
0 0 −1/2 1/2 1/2 −1/2
0 −1 1/2 −1/2 −1/2 3/2


The secular equation is

|V−ω2T| = k

∣∣∣∣∣∣∣∣∣∣∣∣

1−mω2/k 0 −1 0 0 0
0 1−mω2/k 0 0 0 −1
−1 0 3/2−mω2/k −1/2 −1/2 1/2
0 0 −1/2 1/2−mω2/k 1/2 −1/2
0 0 −1/2 1/2 1/2−mω2/k −1/2
0 −1 1/2 −1/2 −1/2 3/2−mω2/k

∣∣∣∣∣∣∣∣∣∣∣∣
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After some algebra, or using a computer program (admittedly what I did...), the secular
equation is

|V − ω2T| = −k(mω2/k)3(mω2/k − 1)(mω2 − 2)(mω2 − 3)

which leads to the set of six eigenfrequencies:

ω2
k = {0, 0, 0, k/m, 2k/m, 3k/m}

The null eigenfrequencies correspond to the rigid body motions of the molecule: translation
in the x-y plane (2 modes), and rotation about the z-axis (1 mode). We can see that because
the translation vectors vectors

ax = x(1, 0, 1, 0, 1, 0, )

ay = y(0, 1, 0, 1, 0, 1),

and the rotation vector about the particle at the origin

aθ = l(0, 0, 1− cos θ, sin θ,− sin θ, 1− cos θ) ≈ lθ(0, 0, 0, 1,−1, 0)

all satisfy (V − ω2
kT) · ak = V · ak = 0.

The other three eigenmodes are:

a1 = (−1,−1, 0, 1, 1, 0)

for ω2
1 = k/m, with springs along the x, y axes stretching and compressing in phase with

each other but out of phase with the diagonal spring. The normal mode satisfies satisfying
(V − ω2

1T) · a1 = (V − kT) · a1 = 0.

a2 = (1,−1,−1, 0, 0, 1)

with ω2
2 = 2k/m, with side springs stretching and compressing out of phase phase with

each other.
a3 = (1, 1,−2, 1, 1,−2)

for ω2 = 3k/m, with all springs stretching and compressing in phase.

Problem 6-11: Rod hanging on springs

We will use as generalized coordinates the position of the center of mass of the rod (two
coordinates), and the rotation angle of the rod with respect to the horizontal position. We
set up a coordinate system with the origin in the suspension plane, halfway between the
suspension points, with the x-axis pointing towards the right and the y-axis pointing down.
We express the generalized coordinates in terms of deviation from the equilibrium position.
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The equilibrium position will be x0 = 0, y0 = y0, θ0 = 0, and we then use coordinates x, y, θ
for deviations from equilibrium.

The kinetic energy is

T =
1
2
m(ẋ2 + ẏ2) +

1
2
Iθ̇2

where I = ml2/12 is the moment of inertia about an axis perpendicular to the plane of
motion, with respect to the center of mass. In order to work with coordinates with the
same units, we choose to work with x, y, lθ/2, and the kinetic energy is then

T =
1
2

(
mẋ2 + mẏ2 + m(lθ̇/2)2/3

)
and the kinetic energy matrix is T = diag(m,m, m/3).

The potential energy is the sum of gravitational potential energy Vg = −mg(y + y0),
and the potential energy in the springs. The length of the springs are equal to the distance
between the suspension points R± = (±L, 0) and the ends of the bar r± = (x±l cos θ/2, y+
y0 ± l sin θ/2):

l± = |r± −R±|

=
(
(x± l cos θ/2∓ L)2 + (y + y0 ± l sin θ/2)2

)1/2

=
(
L2 + (l/2)2 + y2

0 + x2 + y2 − lL cos θ ± xl cos θ ∓ 2xL± y0l sin θ + 2y0y ± yl sin θ
)1/2

≈
(
L2 + (l/2)2 − lL + y2

0 ± xl ∓ 2xL± y0lθ + 2y0y
)1/2

≈
(
(L− l/2)2 + y2

0 ∓ 2(L− l/2)x + 2y0y ± y0lθ
)1/2

≈ l0

√
1∓ 2

(L− l/2)x
l20

+ 2
y0y

l2
± y0lθ

l20

≈ l0

(
1∓ (L− l/2)x

l20
+

y0y

l2
± y0lθ

2l20

)
We have defined l20 = (L− l/2)2 + y2

0, which is the length of the springs in equilibrium. We
can use sin θ0 = (L− l/2)/l0 and cos θ0 = y0/l0, so the spring lengths are

l± = l0 ∓ x sin θ0 + y cos θ0 ± (lθ/2) cos θ0

Notice that the angle θ0 does not have anything to do with the generalized coordinate
θ, and is not the equilibrium value of the angle θ (θ = 0 in equilibrium, since the rod is
horizontal in equilibrium).

The potential energy is

V = −mg(y + y0) +
1
2
k(l+ − b)2 +

1
2
k(l− − b)2

≈
[
k(l0 − b)2 −mgy0

]
+ [2k(l0 − b) cos θ0 −mg] y

+
[
k sin2 θ0x

2 + k cos2 θ0y
2 + k cos2 θ0(lθ0/2)2 − 2k sin θ0 cos θ0x(lθ/2)

]
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The constant term can be ignored; the linear term tells us about the equilibrium length
of the springs, balancing gravity and springs. The quadratic terms are the ones determining
the equations of motion, with the potential matrix being (for the variables x, y, lθ/2):

V = 2k

 sin2 θ0 0 − sin θ0 cos θ0

0 cos2 θ0 0
− sin θ0 cos θ0 0 cos2 θ0


The secular equation is is then

|V − ω2T| = 2k

∣∣∣∣∣∣
sin2 θ0 −mω2/2k 0 − sin θ0 cos θ0

0 cos2 θ0 −mω2/2k 0
− sin θ0 cos θ0 0 cos2 θ0 −mω2/6k

∣∣∣∣∣∣
= 2k(cos2 θ0 −mω2/2k)

(
(sin2 θ0 −mω2/2k)(cos2 θ0 −mω2/6k)− sin2 θ0 cos2 θ0

)
= mω2(cos2 θ0 −mω2/2k)(mω2(cos2 θ0 − sin2 θ0/3)/2k − 1)

The eigenfrequencies are

ω2
i = {0, 2k cos2 θ0/m, 2k(cos2 θ0 + sin2 θ0/3)/m}.

The equations for the coefficients of the normal modes are

(2k sin2 θ0 −mω2
i )ai1 = 2k sin θ0 cos θ0ai3

(2k cos2 θ0 −mω2
i )ai2 = 0

The null eigenfrequency mode (“DC mode”) has the bar rotating so that the vertical
position of the center of mass does not move, and the end points describe circles that
keep the spring lengths calibrations: the potential energy remains constant. For the null
eigenfrequency ω2

1 = 0, the eigenvector is

a1 = (cos θ0, 0, sin θ0)/
√

m(cos2 θ0 + sin2 θ0/3)

The eigenmode corresponding to ω2
2 = 2k cos2 θ0/m has only vertical motion of the bar,

without rotation:
a2 = (0, 1, 0)/

√
m

The highest frequency eigenmode has no vertical motion of the bar’s center of mass,
like the DC mode, but the bar is rotating so that one spring is stretched and the other
compressed:

a3 = A(− sin θ0 cos θ0, 0, 1− 5 sin2 θ0/3)
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Problem 6-12: Two masses and three springs

There are two masses, whose position vectors are (using an origin on the left wall)

r1 = (a + x1)̂i,

r2 = (2a + x2)̂i.

The kinetic energy is

T =
1
2
mẋ2

1 +
1
2
mẋ2

2

so the kinetic energy matrix is just a 2x2 identity matrix times the mass m:

T = m

(
1 0
0 1

)
The potential energy is

V =
1
2
k(r1 − a)2 +

1
2
3k(r2 − r1 − a)2 +

1
2
k(2a− r2)2

=
1
2
kx2

1 +
3
2
(x1 − x2)2 +

1
2
kx2

2

=
1
2
k(4x2

1 − 6x1x2 + 4x2
2)

so the potential energy matrix is

V = k

(
4 −3
−3 4

)
The eigenvalue equation is

|V − ω2T| =
∣∣∣∣ 4k −mω2 −3k

−3k 4k −mω2

∣∣∣∣ = (4k −mω2)2 − 9k2 = (k −mω2)(7k −mω2)

so the eigenvalues are ω2
∓ = {k/m, 7k/m}. The normal mode with frequency ω2

− = k/m
has an eigenvector equation

0 = (V − (k/m)T) · a− =
(

3k −3k
−3k 3k

)(
a−1

a−2

)
= 3k

(
a−1 − a−2

−a−1 + a−2

)
which tells us that a− = a−(1, 1) (when : the two masses move in phase, leaving the middle
spring unstretched, and compressing the first spring at the same time the last spring is
stretched.
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The normal mode with frequency ω2
− = 7k/m has an eigenvector equation

0 = (V − (k/m)T) · a+ =
(
−3k −3k
−3k −3k

)(
a+1

a+2

)
= 3k

(
−a+1 − a+2

−a+1 − a+2

)
which tells us that a+ = a+(1,−1): the two masses move out of phase, compressing the
middle spring, while the first spring and the last spring are stretched.

Normalizing the normal modes with the kinetic energy matrix, we obtain

a− =
1√
2m

(1, 1)

a+ =
1√
2m

(1,−1)

Problem 6-18: Spring and electromagnetic forces

The potential energy is

V =
1
2
kr2 + qφ− qA · v

If the electric field is E = Eî and the magnetic field is B = bĵ, the electric potential is
φ = −Ex and the vector potential is A = −Bxk̂, so that E = −∇φ and B = ∇×A. The
choice for A is not unique, but the results are independent of the choice made.

The Lagrangian is then

L =
1
2
m(ẋ2 + ẏ2 + ż2)− 1

2
k(x2 + y2 + z2) + qEx−QBxż

The equations of motion are

mẍ + kx− qE + qBż = 0
mz̈ − qBẋ + kz = 0

mÿ + ky = 0

The equations for x, z are coupled, while the equation for y is independent of x, z and
has the well known simple harmonic oscillator solution wit frequency ω2 = k/m.

In equilibrium, the particle is displaced from the origin due to the electric force, bal-
anced by the spring: r0 = (qE/k, 0, 0). If we consider small deviatons from equilibrium,
with the position vector r = (qE/k + x, y, z), then the equations for x, z are

mẍ + kx + qBż = 0
mz̈ + kz − qBẋ = 0
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Following the treatment for problems with small oscillations, we propose solutions of
the form x = <(Xe−iωt), z = <(Ze−iωt) and look for solutions to the complex constants
X, Z:

(k −mω2)X − iqBωZ = 0
iqBωX + (k −mω2)Z = 0

The equations will have non-zero solutions only if the frequency satisfy the secular
equation, equal to the vanishing of the determinant of the matrix form of the equations fro
X, Z:

(k −mω2)2 − (qB)2ω2 = 0

If we define the frequencies ω2
k = k/m (frequency of the mass-spring system n the absence

of EM fields), and ωB = qB/m (cyclotron frequency for a charge in a magnetic field), then
the solutions to the secular equation are

ω2
± = ω2

k +
1
2
ω2

B

(
1±

√
1 + 4

ω2
k

ω2
B

)

The equation for the X, Z in each mode is

Z± =
1
2
iX±

wB

ω±

(
1±

√
1 + 4

ω2
k

ω2
B

)

The third normal mode (since there must be three modes) is the oscillation along the
y-axis with frequency

√
k/m

In the strong field limit, ω2
B � ω2

k (B �
√

mk/q),

ω2
± ≈ ω2

k +
1
2
ω2

B

(
1±

(
1 + 2

ω2
k

ω2
B

− 2
(

ω2
k

ω2
B

)2
))

ω− ≈
w2

k

ωB
=

k

qB

ω+ ≈ ωB =
qB

m

For the lower eigenfrequency , the normal mode solution will have Z ≈ (−iqBω−/k)X ≈
−iX, so the solutiosn for x, z are

x−(t) = <
(
Xe−iω−t

)
= x0 cos(kt/qB + φ0)

z−(t) = <
(
−iXe−iω−t

)
= −x0 sin(kt/qB + φ0)
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The trajectory is a circle in the x − z plane, with the angular velocity vector with
magnitude ω−, along the y-axis. The origin of the circle is displaced from the origin along
the x-axis.

For the higher eigenfrequency, the normal mode solution has Z ≈ (iqB/mω+)X ≈ iX
and the solutions for x, z are

x+(t) = <
(
Xe−iω+t

)
= x0 cos(qBt/m + φ0)

z+(t) = <
(
iXe−iω+t

)
= x0 sin(qBt/m + φ0)

The trajectory is again a circle in the x-z plane, with the center displaced from the origin,
and with the angular velocity vector with magnitude ωB, along the -y axis (the particle
travels the circle in the opposite direction than in the lower eigenmode).

The third normal mode (since there must be three modes) is the oscillation along the
y-axis with frequency

√
k/m, significantly larger than the ω− and significantly smaller

than ωB.
In the low field limit, ωB � ωk, or B �

√
mk/q, the eigenfrequencies are

ω2
± = ω2

k +
1
2
ω2

B

(
1±

√
1 + 4

ω2
k

ω2
B

)

= ω2
k +

1
2
ω2

B

(
1± 2

ωk

ωB

√
1 + 4

ω2
B

ω2
k

)
≈ ω2

k ± ωkωB

The magnetic field is splitting the degenerate x, z spring modes, making one frequency
slightly higher and the other slightly lower than

√
k/m. The eigenmodes have ceofficients

Z± ≈ ±iX±, so we see again that they travel in circles, in opposite directions for each
mode.
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