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Derivation 5-6: Torque free symmetric top

In a torque free, symmetric top, with Ix = Iy = I , the angular velocity vector ω in body
coordinates with axes along the principal axes, is given by

ωx = ω0 cos Ωt
ωy = ω0 sinΩt
ωz = ω3

with Ω = ω3(I3?I)/I. Also in body coordinates, the angular momentum vector L has
components

Lx = Iωx = Iω0 cos Ωt
Ly = Iωy = Iω0 sinΩt
Lz = I3ωz = I3ω3

We see that the component of the angular momentum along the top symmetry axis, Lz,
is constant, and the the components perpendicular to the symmetry axis rotate about
the z axis with angular velocity Ω. Since the top is free of external torques, the angular
momentum vector L is constant in an inertial system. In an inertial system, it is the tops
symmetry axis the one that rotates about the L direction. We can use Euler angles to
describe the rotation between body axes and inertial axes. Comparing the expressions for
the components of ω in body axes we obtained and the expressions for the same components
in terms of Eulers angles in (4.87):

ωx = ω0 cos Ωt = φ̇ sin θ sinψ + θ̇ cosψ
ωy = ω0 sinΩt = φ̇ sin θ cosψ + θ̇ sinψ
ωz = ω3 = φ̇ cos θ + ψ̇

we recognize that the Euler angle θ is constant, the bodys rotation about the symmetry
axis is ψ = π/2− Ω, and

φ̇ cos θ = ω3 − ψ̇ = ω3 + Ω = I3ω3/I

φ̇ sin θ = ω0
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The angle θ is the angle between the symmetry axis and the angular momentum vector,
and is determined by initial conditions. The bodys symmetry axis rotates about the angular
momentum with constant angular velocity φ̇ = I3ω3/I cos θ. We now use the Euler angles
we obtained to calculate the components of ω in the inertial system, using the expression
from Derivation 15 in Chapter 4:

ωx = θ̇ cosφ+ ψ̇ sin θ sinφ = −Ω sin θ sin(φ̇t+ φ0)
ωy = θ̇ sinφ− ψ̇ sin θ cosφ = Ωsinθcos(φ̇t+ φ0)

ωz = ψ̇ cos θ + φ̇ = −Ω cos θ + I3ω3/I

We see that the component of the angular momentum along the z-axis, or the direction of
the angular momentum vector L, is constant, and the component of the angular velocity
perpendicular to L is rotating with angular velocity φ̇. The angle between ~ω and L is given
by sin θ′ =

√
ω2

x + omega2
y/ω = Ω sin θ/ω. The angle between ω and the symmetry axis is

given by sin θ′′ =
√
ω2

x′ + ω2
y′/ω = ω0/ω. Then we have

sin θ′ = Ωsin θ/ω = Ωsin θ sin θ′′/ω0 = Ω sin θ′′/φ̇

where we have used ω0 = φ̇ sin θ, which we had obtained when solving for the Euler angles.
We can also use moments of inertia for an expression of sin θ′ :

sin θ′ = Ωsin θ′′/φ̇ = ΩI cos θ sin θ′′/I3ω3 = ((I3 − I)/I3) cos θ sin θ′′

For the Earth considered as a free symmetric top, we have (I3 − I)/I ≈ 3× 10−3 , so the
angle θ′ is very small, independent of values of θ, θ′′: the angular velocity vector ~ω is very
close to the angular momentum vector L. The measured distance 2R sin θ′′ is about 10m,
so the distance R sin θ′ = (I3 − I)/IR sin θ′′ cos θ ≈ 15mm cos θ < 1.5cm.

As seen in the body axes, the angular velocity vector describes a cone of aperture angle
θ about the symmetry axis: this is called the body cone. As seen in the inertial frame, the
angular velocity vector describes a cone of aperture angle θ , about the angular momentum
vector: this is called the space cone. Both cones share the angular momentum vector along
their sides at any given instant. The angular velocity vector is the instantaneous axis of
rotation, so the cones are rolling without slipping on each other.

A very nice page with animations showing this example, by Prof. Eugene Butikov, can
be found in http://faculty.ifmo.ru/butikov/Applets/Precession.html , from which
Fig.1 is a snapshot.

Exercise 5-15

Consider a flat rigid body in the shape of a right triangle with uniform mass density
σ = M/A, and area A = a2/2, where a is the length of the equal sides of the triangle.
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Figure 1: A rotating torque free symmetric top (left), and the associated space and body
cones. The conserved angular momentum vector (blue) is along the z axis; the (red)
instantaneous angular velocity vector is at the intersection of the cones, precessing about
the z axis. From http://faculty.ifmo.ru/butikov/Applets/Precession.html

Figure 2: Exercise 5-15
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Let us choose the right angle corner of the triangle as the origin of a coordinate system
with the x, y axis along the sides of the triangle. The boundary of the triangle is given by
x+ y = a; the mass elements on the surface will have coordinates (x,y,0) with (x,y) within
the triangle. The elements of the inertia tensor in such a system are

Ixx =
∫

A
σ(y2 + z2)dA = σ

∫ a

0
dx

∫ a−x

0
y2dy = σ

∫ a

0

(a− x)3

3
dx = σ

a4

12
=
Ma2

6

Iyy =
∫

A
σ(x2 + z2)dA = σ

∫ a

0
dy

∫ a−y

0
x2dx =

Ma2

6

Ixx =
∫

A
σ(x2 + y2)dA = Ixx + Iyy =

Ma2

3

Izz = Iyx = −
∫

A
σxydA = −σ

∫ a

0
xdx

∫ a−x

0
ydy = −σ

∫ a

0
xdx

(a− x)2

2
= −σa

4

24
= −Ma2

12

Ixz = −
∫

A
σxzdA = 0 = Iyz

I =
Ma2

12

 2 −1 0
−1 2 0
0 0 4


We look for eigenvalues of the inertia tensor, which will be solutions to the equation

det(I− I1) = 0, or

det(I− I1) =

∣∣∣∣∣∣
2k − I −k 0
−k 2k − I 0
0 0 4k − I

∣∣∣∣∣∣ = (4k − I)((2k − I)2 − k2)

with k = Ma2/12. The three real, positive solutions are the principal moments of inertia:

(I1, I2, I3) = (k, 3k, 4k) = (Ma2/12,Ma2/4,Ma2/3).

The principal axes are the eigenvectors corresponding to each eigenvalue. If the eigen-
vectors have components ~ni = (nix, niy, niz), the equations are I · ~ni = αik~ni with αi =
1, 3, 4. The equations for n1 are:

I · n
¯1 = kn1

k

 2 −1 0
−1 2 0
0 0 4

 n1x

n1y

n1z

 = k

 n1x

n1y

n1z


 2n1x − n1y

−n1x + 2n1y

4n1z

 =

 n1x

n1y

n1z

 → n1x = n1y, n1z = 0.
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The equations for n2 are:
I · n

¯2 = 3kn2

k

 2 −1 0
−1 2 0
0 0 4

 n2x

n2y

n2z

 = 3k

 n2x

n2y

n2z


.  2n2x − n2y

−n2x + 2n2y

4n2z

 = 3

 n2x

n2y

n2z

 → n1x = −n1y, n1z = 0

The equations for n3 are:
I · n

¯3 = 4kn3

k

 2 −1 0
−1 2 0
0 0 4

 n3x

n3y

n3z

 = 4k

 n3x

n3y

n3z


.  2n2x − n2y

−n2x + 2n2y

4n2z

 = 4

 n3x

n3y

n3z

 → n3x = −n3y = 0, n3z 6= 0

The eigenvectors with unit magnitude are then

n1 = (1/
√

2)(1, 1, 0)

n2 = (1/
√

2)(1,−1, 0)

n3 = (0, 0, 1)

Exercise 5-17: A rolling cone

The instantaneous axis of rotation, and thus the direction of the angular velocity ~ω is along
the line of contact of the cone with the surface. The center of mass is at a distance 3h/4
along the axis of the cone, which then will be at a vertical height a = 3h sinα/4. The total
mass of the cone is πρh3 tan2 α/3.

Each cross section of the cone is like a disk perpendicular to the cone’s axis (and thus
tilted with respect to the vertical), moving in a circle. The velocity of the center of mass
has magnitude v, and is related to the angular velocity is ω = v/a sinα. We also know that,
if there is no slipping, the velocity f the center of mass is related to the angular velocity as
v = aθ̇ cosα, where θ is the angle along the circle, and θ̇ = 2π/τ . Then ω = θ̇ cotα.

One principal axis of the cone is along its axis, say x3, with moment of inertia I3;
the other two axes are in the plane perpendicular to its axis, with moments of inertia
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I1 = I2 = I. The angular velocity will have a component ω cosα along the cone axis, and
a component ω sinα on the plane perpendicular to the axis.

The moments of inertia with respect to the cone’s axis are I ′3 = 3MR2/10, I ′ =
3M(h2+R2/4)/5, where R = h tanα is the radius of the base. The moments of inertia with
respect to the center of mass at a distance a = 3h/4 along axis, are I3 = I ′3 = 3MR2/10,
I = I ′ −Ma2 = 3M(R2 + h2/4)/20.

If we choose the center of mass as the origin of the body axes, the kinetic energy is

T = (1/2)Mv2 + (1/2)I3ω2 cos2 α+ (1/2)I1ω2 sin2 α = 3Mh2θ̇2(1 + 5 cos2 α)/40.

Exercise 5-18

A weightless bar of length l has two masses of mass m at the two ends, and is rotating
uniformly about an axis passing through the bar’s center, making an angle θ with the bar.

Figure 3: Exercise 5-18

The principal body axes for a bar are one along the bar itself, say the z′ axis, and the
other two axes, x′ and y′, in the plane perpendicular to the bar. The principal moments of
inertia are then I3 = 0, and I1 = I2 = 2ml2. Since the axis of rotation is not perpendicular
to the bar, the angular velocity (along the axis of rotation by definition) will have a
component along the bar, ω// = ω3 = ω cos θ and a component in the plane perpendicular
to the the bar, ω⊥ = ω sin θ. We can choose the x′ axis along the component of the angular
velocity in the plane perpendicular to the bar, so ω1 = ω sin θ and ω2 = 0. For uniform

6



velocity, Euler equations are then

N1 = I1ω̇1 − ω2ω3(I2 − I3) = 0
N2 = I2ω̇2 − ω3ω1(I3 − I1) = 2ml2ω2 sin θ cos θ
N3 = I3ω̇3 − ω1ω2(I1 − I2) = 0

The torque is then along the y′ axis: a direction perpendicular to the bar, and perpen-
dicular to the angular velocity (which is in the x′z′ plane).

We can also calculate the torque from the time derivative of the angular momentum
vector in an inertial frame. If we set up an inertial frame with the origin in the center of
the bar, and the z axis along the rotation axis, then the masses have position vectors

r1 = l(sin θ cos(ωt), sin θ sin(ωt), cos θ)
r2 = l(− sin θ cos(ωt),− sin θ sin(ωt),− cos θ) = −r1.

The velocities are

v1 = lω(− sin θ sin(ωt), sin θ cos(ωt), 0)
v2 = −v1.

The angular momentum of each mass is

L1 = r1 ×mv1

= ml2ω(sin θ cos(ωt), sin θ sin(ωt), cos θ)× (− sin θ sin(ωt), sin θ cos(ωt), 0)
= ml2ω sin θ(− cos θ cos(ωt),− cos θ sin(ωt), sin θ)

L2 = r2 ×mv2 = L1

The total angular momentum is

L = L1 + L2 = −2ml2ω sin θ(cos θ cos(ωt), cos θ sin(ωt),− sin θ)

and the total external torque

N =
dL
dt

= 2ml2ω2 sin θ cos θ(sin(ωt),− cos(ωt), 0)

The torque is a rotating vector, perpendicular to the angular velocity (which is along
the z axis), and perpendicular to the bar (which is along r1), just as we had obtained from
Euler’s equations.

7



5-20: A plane physical pendulum

Consider a uniform rod of length l and mass m, suspended in a vertical plane by one end.
At the other end, there is a uniform disk of radius a and mass M attached, which can
rotate freely in the vertical plane. The systems configuration can be described at any time
with two angles: the angle θ the rod makes with the vertical direction, and the angle φ a
reference direction on the the disk makes with the vertical. If the disk is rigidly attached
to the rod, then θ = φ. Let us take an inertial system with the origin at the suspension
point, a horizontal x axis, and the y axis pointing down along the vertical direction. The
velocity of a mass element dm a distance s along the rod will be sθ̇. The kinetic energy of
the rod is then

Trod = (1/2)(m/l)
∫ l

0
s2θ̇2ds = (1/2)(m/l)(l3/3)θ̇2 = ml2θ̇2/6.

The velocity of points in the disk are equal equal to ṙa + ωa × r′ , where r′ is the position
vector of the mass element in the reference frame fixed to the rotating disk, ra is the position
of the center of mass of of the disk, and the the angular velocity vector ωa describes the
rotation of the disk in an inertial system. The magnitude of the angular velocity vector ωa

is =φ̇, and its direction is perpendicular to the motion plane. The squared speed of mass
elements will then be v2 = v2

a + 2ṙa · (ωa × r′) + ω2
ar

′2, and the kinetic energy of the disk
will be

Tdisk =
1
2

∫
v2dm =

1
2

∫
(v2

a + 2ṙa · (ωa × r′) + ω2
ar

′2)dm.

We recognize that the third term will lead to a term (1/2)I0ω2
a in the kinetic energy,

with I0 = Ma2/2 the moment of inertia of the disk with respect to the center of mass.
The integral of the second term will vanish, since

∫
r′dm is the position of the center

of mass in a coordinate system where the center of mass is at the origin.
The velocity of the center of mass of the disk ṙa is equal to ṙ0 +ωa×a, where r0 is the

position vector of the attachment point, and a is the position of the center of mass of the
disk with respect to the attachment point. Then

v2
a = (ṙ0 + ωa × a) · (ṙ0 + ωa × a)

= v2
0 + 2v0 · (ωa × a) + ω2

aa
2

= l2θ̇2 + 2ωa · (a× v0) + a2φ̇2

The velocity of the attachment point v0 is tangent to the disk, so the direction of the
cross product a×v0 is perpendicular to the plane of motion, and ωa · (a×v0) = ωa|a×v0|.
The position vector of the attachment point is r0 = l(cos θ, sin θ, 0), and its velocity vector
is v0 = lθ̇(− sin θ, cos θ, 0). The position of the center of mass of the disk with respect to
the attachment point is a = a(cosφ, sinφ, 0). Thus,

a× v0 = a(cosφ, sinφ, 0)× lθ̇(− sin θ, cos θ, 0)
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= alθ̇(0, 0, cosφ cos θ + sinφ sin θ)
= alθ̇ cos(φ− θ)k̂

The kinetic energy of the disk is then

Tdisk =
1
2
Mv2

a + I0ω
2
a

=
1
2
M(l2θ̇2 + 2alθ̇φ̇ cos(φ− θ) + a2φ̇2) +

1
2
Ma2

2
φ̇2

=
1
2
Ml2θ̇2 +Malθ̇φ̇ cos(φ− θ) +

3
4
Ma2φ̇2

and the total kinetic energy is

T = Trod + Tdisk

=
1
6
ml2θ̇2 +

1
2
Ml2θ̇2 +Malθ̇dotφcos(φ− θ) +

3
4
Ma2φ̇2

=
1
6
(3M +m)l2θ̇2 +Malθ̇φ̇cos(φ− θ) +

3
4
Ma2φ̇2

The potential energy of the rod is Vrod = −mg(l/2) cos θ, and the potential energy of the
disk is Vdisk = −Mg(l cos θ + a cosφ), so the total potential energy is

V = −1
2
mgl cos θ −Mg(l cos θ + a cosφ) = −1

2
(m+ 2M)gl cos θ −Mga cosφ

The Lagrangian is

L = T − V =
1
2
Ml2θ̇2 +Malθ̇φ̇ cos(φ− θ) +

3
4
Ma2φ̇2 +

1
2
(m+ 2M)gl cos θ +Mga cosφ

Lagrange’s equation for θ is:

d

dt

(
Ml2θ̇ +Malφ̇ cos(φ− θ)

)
−

(
Malθ̇φ̇ sin(φ− θ)− 1

2
(m+ 2M)glsinθ

)
= 0

Ml2θ̈ +Malφ̈ cos(φ− θ)−Malφ̇2 sin(φ− θ) +
1
2
(m+ 2M)gl sin θ = 0

Lagrange’s equation for φ is

d

dt

(
3
2
Ma2φ̇+Malθ̇ cos(φ− θ)

)
−

(
−Malθ̇φ̇ sin(φ− θ)−Mgasinφ

)
= 0

3
2
Ma2φ̈+Malθ̈ cos(φ− θ) +Malθ̇2 cos(φ− θ) +mga sinφ = 0
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Exercise 25: A rolling sphere

The sphere is a rigid body described by the position of its center of mass r = (x, y, z), and
its orientation, defined by Euler angles θ, φ, ψ. The constraint of the sphere remaining on
the surface (the effect of the normal force responding to gravity) is

z = R

(if the origin of the coordinate system is on the surface). At any instant, the sphere is
rotating about an axis on its point of contact with the surface, which is the instantaneous
axis of rotation and the direction of the angular velocity vector ω, and thus ω = (ωx, ωy, ωz).
If the sphere is not slipping, the angular velocity vector is perpendicular to the velocity
of the center of mass, ω · v = 0, which we can express as a condition for an angle Θ to
exist (defining the direction of the horizontal component of the angular velocity) such that
ω = (Ω cos Θ,Ω sinΘ, ωz) and v = v(sinΘ,− cos Θ). Moreover, not slipping also means
that the instantaneous velocity of the contact point is zero:

0 = vc = v + ω × r′

= v(sinΘ,− cos Θ, 0) + (Ω cos Θ,Ω sinΘ, ωz)× (0, 0,−R)
= (v −RΩ)(sinΘ,− cos Θ, 0)

which then means
v = RΩ.

The angular velocity vector is related to Euler angles, and thus our constraints are

Rωx = v cos Θ = −ẏ = R(θ̇ cosφ+ ψ̇ sin θ sinφ)
Rωy = v sinΘ = ẋ = R(θ̇ sinφ− ψ̇ sin θ cosφ)

It may be useful to compare these conditions with the problem of a rolling disk considered
in Chapter 1: our equations are the same as (1.39), since the disk would have ψ̇ = 0.

We also know that ωz = ψ̇ cos θ+ φ̇, but that is not a constraint, of course. The angular
velocity ωz is the instantaneous “spinning” velocity of the sphere about a vertical axis.

The sphere then has 6 coordinates, and three constraints, so the system only has three
degrees of freedom. We’d like to choose these as the three Euler angles, for example, using
the two costraints to solve for the x, y. However, the constraints are non-holonomic and
do not allow us to integrate them for x, y. To prove the constraints are non-holonomic, we
consider the differentials

dfx(x, θ, ψ, φ) = R(dθ sinφ− dψ sin θ cosφ)− dx

dfy(y, θ, ψ, φ) = R(dθ cosφ+ dψ sin θ sinφ) + dy
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and we prove they are not exact differentials (they are not derivatives of a function):

d

dφ

dfx

dθ
=

d

dφ
R sinφ = R cosφ 6= d

dθ

dfx

dφ
= 0

d

dφ

dfy

dθ
=

d

dφ
R cosφ = −R sinφ 6= d

dθ

dfy

dφ
= 0

We now want to write Lagrange’s equations of motion, using Lagrange multipliers.
The potential energy is constant, so we only have kinetic energy. The kinetic energy has a
translational part, and a rotational part. The rotational energy is especially simple since
the sphere has identical moments of inertia about the principal axes:

L = T =
1
2
mv · v +

1
2
Iω · ω

=
1
2
m(ẋ2 + ẏ2) +

1
2
I((θ̇ cosφ+ ψ̇ sin θ sinφ)2 + (θ̇ sinφ− ψ̇ sin θ cosφ)2 + (ψ̇ cos θ + φ̇)2)

=
1
2
m(ẋ2 + ẏ2) +

1
2
I(θ̇2 + ψ̇2 + φ̇2 + 2φ̇ψ̇ cos θ)

The non-holonomic constraints are

Fx = R(θ̇ sinφ− ψ̇ sin θ cosφ)− ẋ

Fy = R(θ̇ cosφ+ ψ̇ sin θ sinφ) + ẏ

Lagrange’s equations are

mẍ = µx
∂Fx

∂ẋ
= −µx

mÿ = µy
∂Fy

∂ẏ
= µy

Iθ̈ + Iφ̇ψ̇ sin θ = µx
∂Fx

∂θ̇
+ µy

∂Fy

∂θ̇
= R(µx sinφ+ µy cosφ)

Iψ̈ + I(φ̈ cos θ − φ̇θ̇ sin θ) = µx
∂Fx

∂ψ̇
+ µy

∂Fy

∂ψ̇

= R sin θ(−µx cosφ+ µy sinφ)

Iφ̈+ I(ψ̈ cos θ − ψ̇θ̇ sin θ) = 0 = I
d

dt
(φ̇+ ψ̇ cos θ) = I

dωz

dt

We have then 7(!) differential equations (five Lagrange equations and two constraints)
for the eight unknowns x, y, φ, θ, ψ, µx, µy.
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The last equation (Lagrange’s equation for ψ) says that the angular velocity ωz is
constant. This is because φ is a cyclical variable in the Lagrangian and because the
constraints do not depend on φ̇. Notice that ψ is also a cyclical variable in the Lagrangian,
but it is not associated with a conserved quantity because the constraints depend on ψ̇.

Since there is no dissipation or forces doing any work, the energy (equal to the kinetic
energy) is conserved:

E = T + V = Ttr + Trot + 0 =
1
2
mv · v +

1
2
Iω · ω =

1
2
mv2 +

1
2
I(Ω2 + ω2

z)

Due to the constraint v = RΩ, the energy is equal to E = 1
2(mR2+I)Ω2+ 1

2Iω
2
z . Since ωz is

constant, then we know that Ω (and thus also v) are constant. Therefore, the translational
kinetic energy 1

2mv
2 and the rotational energy 1

2I(Ω
2 + ω2

z) are separately conserved.

Exercise 30: Closing tilted door

The door’s axis of rotation is along the hinges, which make an angle θ with the vertical
(normally, on firm ground and for a well aligned door, of course, θ = 0). The position
of the door as a rigid body is determined by the angle about its axis of rotation. The
principal axes of the door are an axis perpendicular to the door, and two axes in the door
plane, parallel to the door’s sides (assumed to be straight) .

We choose a body coordinate system with an origin in the bottom door’s corner along
the hinged side. We choose an inertial coordinate system with the same origin, a vertical
axis z pointing up, and two perpendicular axis x, y in the horizontal plane. We choose
body axes x′ along the short side of the door, z′ along its hinged side (the axis of rotation),
and y′ perpendicular to the door.

Following the convention for Euler angles, and placing the door in the x′z′ plane in
Figure 4.7, we see that the angle θ is the angle between the door and the vertical; the angle
φ = 0, and the angle ψ is the one that defines the position (angle) of the door.

The initial position of the door (“lifted” by 90 degrees) has an angle ψ = 0. The final
equilibrium position of the door (when the door is “shut”) has an angle ψ = −π/2.

The gravitational potential energys is V = −mg · r0 = mgz, where r0 is the position of
the center of mass in the inertial system, and z its vertical component.

The position of the center of mass in the body axes system is r′0 = (x′, y′, z′) =
(w, 0, h)/2, where w is the door’s width and h is the doors height. In the inertial sys-
tem, the position of the center of mass is given by the transformation (4.47), r0 = A−1r′0 .

The vertical coordinate will be

z = x′ sin θ sinψ + y′ sin θ cosψ + z′ cos θ = (w/2) sin θ sinψ + (h/2) cos θ

The gravitational potential energy is then

V = mgz = mg(w sin θsinψ + h cos θ)/2
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Since the motion is a pure rotation, the kientic energy has the form T = (1/2)I0ω2,
where I0 is the moment of inertia about the axis of rotation (the door’s hinged side, the
z′ axis), and ω = ψ̇ is the angular velocity: Trot = 1

2Iz′ψ̇2 . The moment of inertia of the
door with respect to the z′ axis, is calcualted integrating over the points on the door (all
with y′ = 0 coordinates:

Iz′ =
∫

(x′2 + y′2)σdx′dz′ =
m

wh

∫ w

0
x′2dx′

∫ h

0
dz′ =

m

wh

w3

3
h =

1
3
mw2.

The kinetic energy is then

T =
1
2
Iz′ψ̇2 =

1
6
mw2ψ̇2.

The total energy is

E = T + V =
1
6
mw2ψ̇2 +

mg

2
(w sin θsinψ + h cos θ).

In the initial position, ψ = 0 and ψ̇ = 0. Since the energy is conserved, we obtain

E =
1
6
mw2ψ̇2 +

mg

2
(w sin θsinψ + h cos θ) =

mgh

2
cos θ,

an expression we can use as a differential equation for ψ:

ψ̇2 = −3g sin θ
w

sinψ

Notice that since −π/2 < ψ < 0, the expression on the left hand side is a positive
expression. The angular velocity when the door reaches the equilibrium position at ψ =
−π/2 (where it will not stop, but oscillate about, if it can go through the shut position) is
then

ψ̇f =

√
3g sin θ
w

.

The time it will take to reach that position can be obtained the equation for ψ:

dψ

dt
=

√
−3g sin θ

w
sinψ

dt =
√

w

3g sin θ
dψ√
− sinψ

∆t =
√
w

3g

∫ −π/2

0

dψ′√
−sinψ

=
√

w

3g sin θ

∫ 0

π/2

dψ′√
sinψ′
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=
√

w

3g sin θ
2F (π/4, 2)

= 1.51
√

w

g sin θ

sin θ =
w

g

(
1.51
∆t

)2

=
0.9m

9.8m/s2

(
1.51
3s

)2

= 1.3◦

Three seconds is a looong time for a door to close, so we obtain a small hinge angle.
The smallest time for the door to close is when the hinges are horizontal, θ = π/2 and
∆t = 1.51

√
w/g = 0.45sec. The wider the door, the longer it takes to close.
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