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Derivation 4-4

Show that if A is a real 3x3 antisymmetric matrix, then the matrices 1±A are non-
singular, and the matrix B = (1 + A)(1−A)−1 is orthogonal.

If A† = −A, then A has only three independent components:

A =

 0 a b
−a∗ 0 c
−b∗ −c∗ 0

 .
The eigenvalues of A are obtained from the equation det(λ1−A) = 0:

|λ1−A| =

∣∣∣∣∣∣
λ −a −b
a∗ λ −c
b∗ c∗ λ

∣∣∣∣∣∣
= λ(λ2 + |c|2) + a(a∗λ+ cb∗)− b(a∗c∗ − λb∗)
= λ(λ2 + |a|2 + |b|2 + |c|2) + acb∗ − ba∗c∗

If a, b, c are real, then the eigenvalue equation is λ(λ2 + r2) = 0; with r2 = a2 + b2 + c2

a positive number. The solutions are λ = 0,±ir. Then, there exists a (complex!) matrix
R that diagonalize the matrix A:

A′ = R−1AR =

 0 0 0
0 ir 0
0 0 −ir


The determinant of the matrix 1±A is equal to

|1±A| = |R−1(1±A)R| = |1±A′| = (1± ir)(1∓ ir) = 1 + r2

and is positive definite: the matrix 1±A is then non-singular, and invertible.
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To prove that B = (1 + A)(1−A)−1 is orthogonal, we need to prove that B† = B−1,
or that BB† = 1. We first start from the deifnition of B to find an expression for B†:

B = (1 + A)(1−A)−1

B(1−A) = 1 + A

(1−A)†B† = (1 + A)†

(1−A†)B† = 1 + A†

(1 + A)B† = 1−A

B† = (1 + A)−1(1−A)

and now we can calculate the product

B†B = (1 + A)−1(1−A)(1 + A)(1−A)−1

= (1 + A)−1(1−A2)(1−A)−1

= (1 + A)−1(1 + A)(1−A)(1−A)−1

= 1

Derivation 4-15

Calculate the components of the angular velocity vector ~ω in terms of Euler’s angles.
The angular velocity vector ~ω of a rigid body is defined through the transformation

between vectors in an inertial space system and a body system:(
d~r

dt

)
space

=
(
d~r

dt

)
body

+ ~ω × ~rbody.

For infinitesimal rotations, this is

d~r = ~rspace − ~rbody = d~Ω× ~rbody

If we perform two such infinitesimal rotations, their infinitesimal rotation vectors will
add:

~rspace = ~r′body + d~Ω′ × ~r′body

= ~rbody + d~Ω× ~rbody + d~Ω′ ×
(
~rbody + d~Ω× ~rbody

)
≈ ~rbody +

(
d~Ω + d~Ω′

)
× ~rbody

Since the angular velocity is defined as ~ω = d~Ω/dt, then the angular velocity of consec-
utive rotations will also add.
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Consider a rigid body undergoing the infinitesimal rotations defining Euler’s angles:
first by dφ about ẑ, then by dθ about ξ̂, and finally by dψ about ζ̂ ′ = ẑ′. Each of these
rotations will have angular velocities ~ωφ = φ̇ẑ, ~ωθ = θ̇ξ̂, and ~ωψ = ψ̇ẑ′, and the total
angular velocity is

~ω = ~ωφ + ~ωθ + ~ωψ = φ̇ẑ + θ̇ξ̂ + ψ̇ẑ′.

If we want the components of the vector ~ω in the space set of axes, we need to find
the components of vectors ξ̂ and ẑ′ in terms of x̂, ŷ, ẑ (it helps to look at Figure 4.7 in the
textbook while doing this exercise).

The vector ξ̂ was obtained by a rotation of the vector x̂, by an angle φ about ẑ :

ξ̂ =

 cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 1
0
0

 =

 cosφ
sinφ

0

 = x̂ cosφ+ ŷ sinφ

We could also obtain this expression using (4.62) in the textbook, with ~r = x̂, n̂ = ẑ,
~r′ = ξ̂, and Φ = −φ (the minus sign arises from the fact that we are rotating a vector, not
a system of coordinates):

ξ̂ = x̂ cosφ+ ẑ(ẑ · x̂)(1− cosφ)− (x̂× ẑ) sinφ = x̂ cosφ+ ŷ sinφ

The vector ẑ′ was obtained from a rotation of the vector ẑ by an angle θ about the
axis ξ̂. The rotation matrix can be obtained by a product of rotation matrices, but we can
also use (4.62), with ~r = ẑ, ~r′ = ẑ′, n̂ = ξ̂ and Φ = −θ (since we have an expression for ξ̂
ready):

ẑ′ = ẑ cos θ + ξ̂(ξ̂ · ẑ)(1− cos θ)− (ẑ × ξ̂) sin θ
= ẑ cos θ − (ẑ × (x̂ cosφ+ ŷ sinφ)) sin θ
= ẑ cos θ − (ŷ cosφ− x̂ sinφ) sin θ
= x̂ sin θ sinφ− ŷ sin θ cosφ+ ẑ cos θ

Finally, the angular velocity vector is

~ω = φ̇ẑ + θ̇ξ̂ + ψ̇ẑ′

= x̂(θ̇ cosφ+ ψ̇ sin θ sinφ) + ŷ(θ̇ sinφ− ψ̇ sin θ cosφ) + ẑ(φ̇+ ψ̇ cos θ)

Exercise 21

Calculate the deflection of a particle thrown up to reach a maximum height z0, and that
of a particle dropped from rest from the same height, due to the Coriolis force.
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The Coriolis force appears as an “extra” force term in a rotating frame (such as one
fixed to Earth), of the form ~FC = −2m~ω × ~v. For a particle moving “up” in the Earth’s
frame, this force has a horizontal direction. If we choose a coordinate system fixed to the
Earth, with the z axis pointing “up”, the x axis pointing north, and the y axis pointing
west, the Earth’s angular velocity will have components ~ω = x̂ω cosλ + ẑω sinλ, where λ
is the latitude angle (zero at the Equator, 90o at the North pole, and 30o27’N at Baton
Rouge).

For a particle moving with vertical velocity vz ẑ, the force is

~Fc = −2m~ω × ~v = −2mωvz(x̂ cosλ+ ẑ sinλ)× ẑ = 2mω cosλ vz ŷ

so the Coriolis force is only in the east-west direction, is maximum at the Equator, and is
in the same direction on both hemispheres.

The motion in the vertical direction is only affected by gravity, so z(t) = z0+v0zt−gt2/2,
and vz = v0z − gt as usual. The acceleration in the y direction, however, is

mÿ = 2mω cosλ(v0z − gt)

and direct integration leads to

y(t) = y0 + v0yt+ 2ω cosλ(v0zt2/2− gt3/6)

If the particle is thrown from the ground with a vertical velocity upwards, then it will
reach its maximum height at time t = v0z/g, and the height will be zmax = v2

0z/2g. The
particle returns to the ground at time t = 2v0z/g, and the total horizontal deflection will
be

∆y = 2ω cosλ

(
v0z
2

(
2v0z
g

)2

− g

6

(
2v0z
g

)3
)

=
4
3
ω cosλ

v3
0z

g2
=
√

2
8
3

cosλ zmax

√
ω2zmax

g

If the particle is dropped from rest from the same height zmax, then v0z = 0. The
particle will reach the ground at time t =

√
2zmax/g, and the total horizontal deflection

will be

∆y = −1
3
ω cosλ gt3 = −1

3
ω cosλ g

(
2zmax

g

)3/2

= −
√

2
2
3

cosλ zmax

√
ω2zmax

g

Thus, the particle gets deflected four times more towards the west if it is thrown
upwards, than the eastern deflection it experiences if it is dropped from the same height. If
a particle were to experience a 1mm deflection when thrown upwards from Baton Rouge,
it needs to have enough initial velocity to reach a maximum height equal to

zmax =
(

3∆y
√
g

8
√

2ω cosλ

)2/3

= 5.6m
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or v0z=10.5 m/s = 24 mph.
In reality, the motion of the particle in the Earth rotating coordinates is affected both

by the Coriolis force ~FC = −2m~ω × ~v and by the centrifugal force ~FC = −m~ω × ~ω × ~r,
which has both horizontal and vertical components. Also, once there is a velocity horizontal
velocity in the east-west direction (proportional to ω), the Coriolis force will also have a
component in the north-south direction (proportional to ω2). However, since the Earth’s
velocity is small compared to the quantities in the system (ωR2 � g), these corrections
are even smaller than the the corrections we calculated, proportional to ω.

Exercise 4-23: Foucalt’s s pendulum

A straightforward derivation of the equations of motion of a Foucalt pendulum can be found
in many textbooks, including Landau and Lifshiftz (Chapter VI, Section 39, Problem 3)
or in Marion and Thorne (Example 10.5). If the pendulum has horizontal displacements
x, y, we assume small oscillations, with oscillation frequency ωo =

√
g/l much smaller than

Earth’s rotation angular velocity ω, then the plane of oscillation of the pendulum will
rotate in a local coordinate system, with angular frequency Ω = ω sinλ, where λ is the
latitude of the location of the pendulum on Earth.

Here’s a derivation of the result. The pendulum mass position is described in a local
coordiante system by r = (x, y, z) (where z is negative in our choice of coordinates axes). In
the absence of Earth’s rotation, the forces are tension T = −Tr, and gravity Fg = −mgk̂.
Newton’s equations of motion F = mr̈ are three equations, plus the cosntraint equation
x2 + y2 + z2 = l2, for the four unknowns x, y, z, T :

mẍ = Tx = −Tx/l
mÿ = Ty = −Ty/l
mz̈ = Tz +mg = −Tz/l −mg

For small oscillations, we have r2 = x2 + y2 � l2, and the equations for z, T are solved
by z ≈ −l, T ≈ mg (up to second order in r/l). The equations for the horizontal motion
are

ẍ+ (g/l)x = 0,

ÿ + (g/l)y = 0.

If the pendulum starts with y0 = ẏ0 = 0, then the initial acceleration is also zero, and thus
y = 0 at all times: the pendulum oscillates in a plane.

Let us now include the Coriolis force, and see why it makes the plane of a planar
pendulum precess. We choose, like in the previous problem and shown in the figure,
the x axis pointing North, so Earth’s angular velocity in a local coordinate system is
~ω = ω(cosλ, 0, sinλ) where λ is the latitude angle (λ = π/2 at the North pole, λ = 0 at
the Equator). Coriolis force is then

5



~FC = −2m~ω × ~v
= −2mω(cosλ, 0, sinλ)× (ẋ, ẏ, ż)
= −2mω(−ẏ sinλ, ẋ sinλ− ż cosλ, ẏ cosλ)

and the equations of motion are

mẍ = −Tx/l + (2mω sinλ)ẏ
mÿ = −Ty/l − (2mω sinλ)ẋ+ (2mω cosλ)ż
mz̈ = −Tz/l −mg − (2mω cosλ)ẏ

For small oscillations, again the z equation is solved by z ≈ −l, T ≈ mg (but only to
first order in r/l). The horizontal equations, however, are now coupled:

ẍ ≈ −(g/l)x+ (2ω sinλ)ẏ
ÿ ≈ −(g/l)y − (2ω sinλ)ẋ

If initially y0 = ẏ0 = 0, but ẋ0 6= 0 (the pendulum is let go from some initial angle in the
North-South vertical plane), the initial acceleration ÿ0 = −(2ω sinλ)ẋ0 6= 0 and the plane
of the pendulum is not constant: the mass will deviate into the East-West plane. If we
define a complex function ξ = x + iy, then the equations can be combined in a complex
equation of the form

ξ̈ + (g/l)ξ + (2iω sinλ)ξ̇ = 0

which has a solution of the form ξ = ξ+e
iΩ+t + ξ−e

iΩ−t, where Ω± are the solutions to the
equation −Ω2 + (g/l)− 2ωΩ sinλ = 0, or

Ω± = −ω sinλ± ω0

√
1 +

ω2 sin2 λ

ω2
0
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If ω � ω0 =
√
g/l (that is, the period of the pendulum is much shorter than a day, a

very reasonable assumption), then the solutions are Ω± ≈ ±ω0 − ω sinλ, and then

ξ = x+ iy ≈ e−iω sinλt
(
ξ+e

−iω0t + ξ−e
iω0t
)

= e−iω sinλt (A cos(ω0t+ φA) + iB sin(ω0t+ φB))

Using initial conditions r(t = 0) = x0î, we have

ξ(t = 0) = x0 = A cosφA + iB sinφB.

Using the initial condition ṙ(t = 0) = 0, we have

ξ̇(t = 0) = 0 = ω sinλ(A cosφA + iB sinφB) + ω0(−A sinφA + iB cosφB).

Thus, B = φB = 0, A cosφA = x0, A sinφA = x0ω sinλ/ω0, and

ξ = e−iω sinλtA cos(ω0t+ φA)
= e−iω sinλtx0(cosω0t− (ω sinλ/ω0) sinω0t)
≈ e−iω sinλtx0 cosω0t

x(t) = <ξ = x0 cos(ω sinλt) cosω0t

y(t) = =ξ = x0 sin(ω sinλt) cosω0t

If we use polar coordinates r, φ so that x = r cosφ, y = r sinφ, then the precession angle
of the pendulum plane is φ(t) = tan−1(y/x) = (ω sinλ)t. At the North pole, the plane
“rotates” once a day with respect to Earth’s coordinate system, which is rotating once a
day itself: the plane of the pendulum is constant in an inertial frame, as seen in the figure
below. At the Equator, the plane of the pendulum does not rotate in the local coordinate
system: the pendulum co-rotates with the Earth. At Baton Rouge, coordinates are 30.43N
-91.15W, so sinλ = sin(30.43◦) = 0.51, so the plane of the pendulum takes two days to
rotate once, as seen in coordinates tied to Nicholson building.

Problem 4-24

A wagon wheel with spokes is mounted on a vertical axis so it is free to rotate in the
horizontal plane. It is rotating with ω = 3.0rad/s. A bug crawls out on one of the spokes
with a a velocity of 0.5 cm/s, holding on to the spoke with coefficient of friction µ = 0.30.
How far can the bug crawl along the poke before it starts to slip?

In the bug’s rotating coordinate system, there is a centripetal force −mω×ω× r in the
radial direction (away from the center), which gets larger as the bug crawls out. Since the
bug is moving along the spoke with a radial velocity v = vêr, there is also a Coriolis force
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Figure 1: A Foucault pendulum at the north pole. The pendu-
lum swings in the same plane as the Earth rotates beneath it. From
http://en.wikipedia.org/wiki/Foucault pendulum

−2(mv/r)ω×r, tangent to the circle, and of magnitude independent of the radial distance.
The magnitude of the total force is F = mω

√
ω2r2 + 4v2. The static (!) friction force has

magnitude f = µmg. If f ≥ F , then ω2r2 ≤ (µg/ω)2 − 4v2 = (0.98m/s)2 − (0.5cm/s)2 ≈
(0.98m/s)2. We see that the Coriolis force is very small compared to the maximum friction
force, so it can be neglected. Neglecting the Coriolis force, the condition for not splipping
is then r ≤ µg/ω2 = 0.3m. The distance at which the centripetal force is larger than the
Coriolis force is r0 = 2v/ω = 3.3mm.
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