
Phys 7221, Fall 2006: Homework # 6

Gabriela González

October 29, 2006

Problem 3-7

In the laboratory system, the scattering angle of the incident particle is ϑ, and that of the
initially stationary target particle, which recoils, is φ; see Fig. 3.24, or Fig.1 below: what
are the differences in the figures?

Figure 1: A mass M1 scattered by an initially stationary target M2, in the laboratory
system, from www.iue.tuwien.ac.at/phd/hoessinger/node38.html.

In the center of mass system, the scattering angle of the incident particle is Θ, and that
of the target particle (initially stationary) is Φ = π −Θ: see Fig 3.25, or Fig.2.

Figure 2: A mass M1 scattered by an initially stationary target M2, in the center of mass
system, from www.iue.tuwien.ac.at/phd/hoessinger/node38.html
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If V is the velocity of the center of mass, v2 is the velocity of the target particle in
the laboratory system, and v′

2 is the velocity of the target particle in the center of mass
system, then v2 = V + v′

2, represented in Fig.3.

Figure 3: Graphical vector sum v2 = v′
2 + V.

The components of the vector sum are equations relating the magnitudes of the vectors
and the angles φ,Θ, similar to the equaitons (3.106) for m1:

v2 sinφ = v′2 sinΘ
v2 cos φ = V − v′2 cos Θ

From these equations, we obtain an equation similar to (3.107):

tanφ = − sinΘ
cos Θ− (V/v′2)

(1)

The magnitude of v′
2 is related to the magnitude of the relative velocity v: v′2 = µv/m2.

The magnitude of the velocity of the center of mass V is related to the speed of m1 before
the collision: V = µv0/m2 (Eq. 3.105); the ratio is then simply V/v′2 = v0/v. For inelastic
scattering, this ratio is determined by the Q value of the inelastic collision (see 3.113), but
for elastic collisions this ratio is unity.

For elastic collisions, we see that since V = v′2, the triangle in Fig.3 is isosceles, and
then φ = (π −Θ)/2. We can also obtain this result from Eq.1, using some trig magic:

tanφ = − sinΘ
cos Θ− 1

= −2 sinΘ/2 cos Θ/2
2 sin2 Θ/2

= − 1
tanΘ/2

= tan (π/2−Θ/2)

Problem 3-30: Rutherford scattering for an attractive force

We consider an attractive gravitational force of the form F = −ker/r2, and follow the
derivation of the Rutherford formula in (3.98)-(3.102).

For a particle approaching an initially stationary target with impact parameter s, with
velocity v0 at infinity, the angular momentum is l = mv0s. The initial energy, if the target
is stationary, is E = mv2

0/2, so l = s
√

2mE.
When the energy E is greater than zero, the orbit is a hyperbola given by

1/r = (µk/l2)(1− e cos θ),

with
e2 = 1 + 2El2/µk2 = 1 + (m/µ)(2Es/k)2 > 1.
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We have chosen θ′ = π, like in the textbook, so θ = 0 corresponds to periapsis. Notice
that the eccentricity is the same as in repulsive scattering, since it depends on k2, but the
orbit equation is different, since it is proportional to k.

Since e > 1, the angular values are restricted so that cos θ < 1/e and the radial
coordinate is positive. The minimum radial distance will be when θ = 0, and r = 1/(1+e);
the asymptotes with r = ∞ are at cos Ψ = −1/e (since Ψ > π/2), as shown in Fig.. For
large energies and thus large eccentricities, the asymptotes are close to π/2 (the orbit is
almost straight); for small energies, and eccentricities close to unity, the asymptotes are
close to π (the orbit has almost a 90deg angle).

The scattering angle Θ is related to Ψ as Θ = 2Ψ − π (similar, but different than
3.94), and then 1/e = − cos Ψ = − cos((Θ + π)/2) = sin(Θ/2), and cot2(Θ/2) = e2 − 1 =
(m/µ)(2Es/k)2, which results in

s =
k

2E

√
µ

m
cot

Θ
2

,

of similar form than 3.101, and therefore the scattering cross section is

σ(Θ) =
1
4

(
k

2E

)2 µ

m
csc4 Θ

2

Problem 3-32

We consider a potential equal to zero for r > a, and equal to a negative constant V = −V0

for r ≥ a.
If the potential energy V is a constant, the force F = ∇V is zero, and the motion is a

stright line with constant velocity. If the potential has different constant values in different
regions, the particle is ”refracted” across the boundary (a sphere in this case), traveling
in a straight line in all regions, but changing slope (velocity direction) and speed as the
particle goes in and out of the sphere. Since ∆V/∆r > 0 across the sphere, the change in
potential represents a an attractive central force, acting only across the sphere boundary.
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If the particle approaches the sphere with horizontal velocity of magnitude v0, the
“incident” angle (angle between velocity and the normal to the sphere) is α, such that
sinα = s/a (see figure). As it gets refracted, the particle is in the sphere with velocity v1,
with the angle between the velocity and the normal to the sphere β.

The angular momentum L = r × p = l k̂ is conserved. The magnitude of the angular
momentum before the particle enters the sphere is l = mav0 sinα, and the angular mo-
mentum just after it enters the sphere is l = mav1 sinβ. Since the angular momentum is
conserved, we obtain “Snell’s law”:

sinα =
v1

v0
sinβ = n sinβ,

with an “index of refraction” n = v1/v0.
Energy E = T + V is conserved too. The energy before the particle enters the sphere

is E = mv2
0/2, and after it enters the sphere, is E = mv2

1/2− V0, so

n =
v1

v0
=

√
E + V0

E
.

Since n > 1, β < α: the particle gets refracted “down”, like expected from an attractive
force.

When the particle goes out of the sphere, it gets refracted again, exiting the sphere
with velocity v2 = v0, at a direction with angle α with respect to the normal to the sphere,
at the exiting point. The scattering angle is then

Θ = 2(α− β)

In order to get the scattering cross section, we need the function s(Θ), where s is the
impact parameter. We use sinα = s/a and sinβ = sinα/n = s/an to get what we need:

s

a
= sinα = sin(Θ/2 + β)
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= sinΘ/2 cos β + cos Θ/2 sinβ

= sinΘ/2 cos β +
s

an
cos Θ/2

s

a
(n− cos Θ/2) = n sinΘ/2 cos β(s

a

)2
(n− cos Θ/2)2 = n2 sin2 Θ/2 cos2 β(s

a

)2
(n− cos Θ/2)2 = n2 sin2 Θ/2(1− s2

n2a2
)(s

a

)2 (
(n− cos Θ/2)2 + sin2 Θ/2

)
= n2 sin2 Θ/2

s2 =
a2n2 sin2 Θ/2

1 + n2 − 2n cos Θ/2

s =
an sinΘ/2√

1 + n2 − 2n cos Θ/2

This formula gives the impact parameter as a function of the scattering angle Θ and
the index n, itself a function of the energy E and the potential parameter V0. The function
s(Θ) is antisymmetric on Θ: a particle with negative impact parameter −s will scatter
downwards with a negative angle −Θ, equal to minus the upwards scatter angle for a
particle approaching with a positive impact parameter s and the same energy.

At s = 0, Θ = 0 and the particle is not refracted at all, since it enters the sphere
in a normal direction. The function s(Θ) has a maximum s = a at cos Θmax/2 = 1/n,
n sinΘmax/2 =

√
n2 − 1. So, there is a maximum angle Θmax = 2 cos−1(1/n), which is the

scatter angle of particles grazing the spherical region (particles wills scatter down from the
top of the sphere, and up from the bottom of the sphere).

As the energy of the approaching particle increases, the index of refraction n =
√

V0/E + 1 ≈
1 , and Θmax = 2 cos−1(1/n) ≈ 0: the particles get only slightly deflected.

For small incident energies, n =
√

V0/E + 1 is large, and Θmax = 2 cos−1(1/n) → π:
the particle is refracted by β = π/2 across the first boundary, and then goes back in the
direction it approached.

From the function s(Θ), we obtain the scattering cross section (not a pretty formula!):

ds

dΘ
=

1
2
an

(cos Θ/2− n)(1− n cos Θ/2)
(1 + n2 − 2n cos Θ/2)3/2

σ(Θ) =
s

sinΘ
ds

dΘ
=

a2n2

4 cos Θ/2
(cos Θ/2− n)(1− n cos Θ/2)

(1 + n2 − 2n cos Θ/2)2

The total cross section is

σT =
∫

4π
σ(Ω)dΩ = 2π

∫ Θmax

0
σ(Θ) sin ΘdΘ

= 2π

∫
s

ds

dΘ
dΘ = π(s2(Θmax)− s2(0))

= π
a2n2 sin2 Θmax/2

1 + n2 − 2n cos Θmax/2
= πa2
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which is of course the cross section area of the incoming beam of particles incident on the
sphere, the only ones that are scattered.

Problem 3-35

Consider a potential of the form V (r) = k/r − k/a if r ≤ a, and V (r) = 0 if r ≥ a, a
“truncated” Coulomb potential. This is a central potential so energy and momentum are
conserved. Since the potential is continuous across the spherical boundary, there is no
refraction as there was in Problem 3.32.

Outside the sphere, the potential is zero, so the particle moves in a straight line. Inside
the sphere, the orbit is an hyperbola , as shown in the figure:

r(θ) =
l2

mk

1
e cos θ − 1

=
1

u(θ)
(2)

where we have chosen the origin for angle theta at the closest point to the center, where
r = rmin = (l2/mk)1/(e− 1).
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When the particle enters the sphere, r = a, θ = −φ, with the angle φ shown in the
figure. When the particle exits the sphere, r = a and θ = φ. The scattering angle is
Θ = π − 2(α + φ), or

sinΘ/2 = cos(α + φ).

We need then to find expressions for φ and α relating those angles to the scattering pa-
rameter s and the energy E. From the drawing, we see that sin α = s/a.

The angular momentum is l2 = m2v2
0s

2 = 2mEs2. From the orbit equation, evlauted
at θ = ±φ where r = a, we have

1
a

=
mk

l2
(e cos φ− 1) =

k

2Es2
(e cos φ− 1)

The x and y coordinates of the trajectory inside the sphere are given by x = r cos(−θ+
φ+α+Θ) = r sin(θ−Θ/2), y = r sin(−θ+φ+α+Θ) = r cos(θ−Θ/2). When the particle
enters the sphere, r = a, θ = −φ, and the velocity is horizontal, so ẏ = (dy/dθ)θ̇ = 0,
providinga nother relationship between φ and α:

dy

dθ
=

dr

dθ
cos(θ −Θ/2)− r sin(θ −Θ/2)

= r

(
e sin θ

e cos θ − 1
cos(θ −Θ/2)− sin(θ −Θ/2)

)
dy

dθ

∣∣∣∣
θ=−φ

= 0 =
−e sinφ

e cos φ− 1
cos(−φ−Θ/2)− sin(−φ−Θ/2)

tan(φ + Θ/2) =
e sinφ

e cos φ− 1

tan(π/2 + α) =
e sinφ

e cos φ− 1

tanα =
e cos φ− 1

e sinφ

e sinφ sinα = e cos φ cos α− cos α

cos α = e cos(φ + α) = e cos(π/2−Θ/2)
cos α = e sinΘ/2

This provides the desired relationship between s and Θ, since cos α =
√

1− (s/a)2, and
the eccentricity e is related to the energy E = T + V and angular momentum l = mr2θ̇:

E =
1
2
mṙ2 +

1
2
mr2θ̇2 + V (r)

=
1
2
m

(
dr

dθ

)2

θ̇2 +
1
2

l2

mr2
+

k

r
− k

a

=
1
2

l2

mr4

(
dr

dθ

)2

+
1
2

l2

mr2
+

k

r
− k

a

=
1
2

l2

m

(
du

dθ

)2

+
l2

2m
u2 + ku− k

a
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=
1
2

l2

m

(
mk

l2

)2

e2 sin2 θ +
l2

2m

(
mk

l2

)2

(e cos θ − 1)2 +
mk2

l2
(e cos θ − 1)− k

a

=
1
2

mk2

l2
(e2 − 1)− k

a

e2 = 1 +
2(E + k/a)l2

mk2
= 1 + λ(s/a)2

with λ = 4Ea/k(1 + Ea/k).
We finally have then a formula for s(Θ):

cos2 α = e2 sin2 Θ/2

1− s2

a2
=

(
1 + λ

s2

a2

)
sin2 Θ/2

s2 = a2 1− sin2 Θ/2
1 + λ sin2 Θ/2

= a2 cos2 Θ/2
1 + λ sin2 Θ/2

The function s(Θ) is monotonically decreasing, from s = a at Θ = 0, to s = 0 at Θ = π.
A particle approaching with impact parameter s = a(1− ε), grazing the sphere, will be

only slightly scattered up, with scattering angle sinΘ/2 ≈ ε/λ.
A particle approaching with no angular momentum (s = 0), will have a scattering

angle Θ = π: the particle is bounced back (“back scattered”) from the sphere. Particles
approaching with very small angular momentum will also be backscattered. The minimum
impact parameter for which there will be forward scattering is given by

s0 = s(Θ = π/2) = a
cos π/4√

1 + λ sin2 π/4
=

a/
√

2√
1 + λ/2

If the particle’s initial kinetic energy E is very large compared with the maximum
potential energy k/a: E � k/a, then λ� 1 and most particles will have forward scattering.
If the energy is very low, λ� 1, and the particles with an impact parameter s ≥ s0 ≈ a/

√
2

will be forwards scattered: half the cross section area of the incident beam will be back
scattered, and half will be forward scattered.

The scattering cross section is

σ(Θ) =
s

sinΘ

∣∣∣∣ ds

dΘ

∣∣∣∣
=

a2

4
1 + λ

(1 + λ sin2 Θ/2)2
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