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Prob 3-11: Collapse of an orbital system

Consider two particles falling into each other due to gravitational forces, starting from rest
at a distance a. The system has zero angular momentum, with the energy given by
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where m is the reduced mass of the system, and r is the distance between the masses. Notice
that the value of the energy, —k/a, calculated from the initial condition 7 = 0,7 = a, is
not that of a Kepler’s orbit, —k/2a, because [ = 0.

We can derive an equation for r as usual:
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where we used the substitution u? = a — r, and used the fact that dr/dt < 0 to add a
negative sign when taking the square root of #2. We can integrate the equation from the
initial time when u = 0, to the collapse time when u = /a, obtaining the time of the fall:
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If the masses were in a circular orbit of radius a, the period is 7 = 2wy/ma3/k, so the
time of the fall can be expressed as tg = 7/4v/2.




Prob 3-21: A modified Kepler’s potential

Consider a central potential of the form V(r) = —k/r + h/r?. The orbit equation (3.34)
for u() = 1/r(0) is
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The solution to this equation is of the form
km
U=y + Acos(B(0 — 0p))

with 32 =1+ 2mh/I>.

This is the equation of a Kepler orbit (parabola, ellipse or hyperbola) in a coordinate
system where the angular coordinate is 8’ = (36.

A revolution around the origin sweeps a 6 angle equal to 27. If § > 1,there are many
radial oscillations in one revolution; if # ~ 1, the orbit shows a slow precession. If the
energy is negative and 2mh/I> < 1, the orbit is a precessing ellipse. In a cycle of the
periodic motion with period 7, the radial coordinate returns to the original value when

B(0 — 0y) = 2m, or
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The precession speed is then
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This means orbit precession can be used as a test of Newton’s theory for the gravita-
tional force being derived from a potential —k/r. Using I2 = mka(1 — €?), we obtain an
expression for € in terms of the perturbation parameter of Kepler’s potential n = h/ka,
and orbital parameters:
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The effect is more pronounced for eccentric and long orbits. The perihelion of Mercury is
observed to precess (after correcting for known planetary perturbations) by 43 arc-seconds
per century:
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This discrepancy is also (and better) explained by General Relativity.
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Prob 3-23: Mass ratio of Sun and Earth

The period and the semi-major axis of elliptical orbits in Kepler’s potential are related
by (1/27)? = a®u/k where p = myma/(m1 + ms) is the reduced mass of the system, and
k = Gmims. When my > ma, we have (7/27) ~ a3/Gm;. For the Earth-Sun system,
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The measured value, from http://ssd. jpl.nasa.gov/?constants, is 328900.56+£0.02;
our estimate is within 3% of this value.

For the Earth-Moon system,

Taking ratios, we obtain

Prob 3-24: Kepler’s equation

The energy in Kepler’s motion is
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For negative energy and elliptical orbits, the energy is £ = —%, and the angular momen-

tum is 12 = kma(1 — €?), thus
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Since the period of the motion is 7 = 27 /w, with w = \/k/ma?, we obtain
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which we can use to integrate ¢(r). Using the orbit equation r = a(1 — ecos), and
dr = easinydiy we obtain
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which can be now trivially integrated into Kepler’s equation:
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Prob 3-33: A particle in a paraboloid of revolution

A particle with coordinates r = (z,y, 2) is constrained to move in a paraboloid f revolution.
ie., z=1r2/a= (22 +y*)?/a. We will use generalized polar coordinates r, # to describe the
motion of the particle, with z = 72/a. The kinetic energy is
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The potential energy is
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The Lagrangian is
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We see that the coordinate 6 is cyclic, so the z-component of the angular momentum
is conserved (associated with the symmetry of rotation about the z-axis):
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Lagrange’s equation for the coordinate r is
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There are solutions for circular orbits, with r* = r$ = 1%a/(2gm?). If the orbit is circular
with radius rg, the angular momentum is related to the radius and the speed, I = mrgv.
We can then find the condition between the speed and the radius for circular orbits: v? =
2gr8 /a. If the orbit is only approximately circular, we find an approximate equation for
the perturbation dr = r — ro:
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This equation has a periodic solution, with period 7 = 27 /w, with w? = (2g/a)/(1+2r3/a?).
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