Phys 7221, Fall 2006: Homework \# 5

Gabriela González

October 1, 2006

Prob 3-11: Collapse of an orbital system

Consider two particles falling into each other due to gravitational forces, starting from rest at a distance a. The system has zero angular momentum, with the energy given by

$$
E=T+V=\frac{1}{2} m \dot{r}^{2}-\frac{k}{r}=-\frac{k}{a}
$$

where m is the reduced mass of the system, and r is the distance between the masses. Notice that the value of the energy, $-k / a$, calculated from the initial condition $\dot{r}=0, r=a$, is not that of a Kepler's orbit, $-k / 2 a$, because $l=0$.

We can derive an equation for r as usual:

$$
\begin{aligned}
\frac{d r}{d t} & =\sqrt{\frac{2}{m}} \sqrt{E-V} \\
& =\sqrt{\frac{2}{m}} \sqrt{\frac{k}{r}-\frac{k}{a}} \\
d t & =-\sqrt{\frac{m a}{2 k}} \frac{\sqrt{r} d r}{\sqrt{a-r}} \\
& =\sqrt{\frac{2 m a}{k}} \sqrt{a-u^{2}} d u
\end{aligned}
$$

where we used the substitution $u^{2}=a-r$, and used the fact that $d r / d t<0$ to add a negative sign when taking the square root of \dot{r}^{2}. We can integrate the equation from the initial time when $u=0$, to the collapse time when $u=\sqrt{a}$, obtaining the time of the fall:

$$
t_{0}=\sqrt{\frac{2 m a}{k}} \int_{0}^{\sqrt{a}} \sqrt{a-u^{2}} d u=\sqrt{\frac{2 m a}{k}} \frac{\pi a}{4}=\pi \sqrt{\frac{m a^{3}}{8 k}}
$$

If the masses were in a circular orbit of radius a, the period is $\tau=2 \pi \sqrt{m a^{3} / k}$, so the time of the fall can be expressed as $t_{0}=\tau / 4 \sqrt{2}$.

Prob 3-21: A modified Kepler's potential

Consider a central potential of the form $V(r)=-k / r+h / r^{2}$. The orbit equation (3.34) for $u(\theta)=1 / r(\theta)$ is

$$
\begin{gathered}
\frac{d^{2} u}{d \theta^{2}}+u=-\frac{m}{l^{2}} \frac{d}{d u} V=-\frac{m}{l^{2}} \frac{d}{d u}\left(-k u+h u^{2}\right)=\frac{k m}{l^{2}}-\frac{2 m h}{l^{2}} u \\
\frac{d^{2} u}{d \theta^{2}}+\left(1+\frac{2 m h}{l^{2}}\right) u=\frac{k m}{l^{2}}
\end{gathered}
$$

The solution to this equation is of the form

$$
u=\frac{k m}{l^{2}}+A \cos \left(\beta\left(\theta-\theta_{0}\right)\right)
$$

with $\beta^{2}=1+2 m h / l^{2}$.
This is the equation of a Kepler orbit (parabola, ellipse or hyperbola) in a coordinate system where the angular coordinate is $\theta^{\prime}=\beta \theta$.

A revolution around the origin sweeps a θ angle equal to 2π. If $\beta \gg 1$, there are many radial oscillations in one revolution; if $\beta \approx 1$, the orbit shows a slow precession. If the energy is negative and $2 m h / l^{2} \ll 1$, the orbit is a precessing ellipse. In a cycle of the periodic motion with period τ, the radial coordinate returns to the original value when $\beta\left(\theta-\theta_{0}\right)=2 \pi$, or

$$
\theta-\theta_{0}=\frac{2 \pi}{\beta}=\frac{2 \pi}{\sqrt{1+2 m h / l^{2}}}=2 \pi-\dot{\Omega} \tau
$$

The precession speed is then

$$
\dot{\Omega}=\frac{2 \pi}{\tau}\left(1-\frac{1}{\sqrt{1+2 m h / l^{2}}}\right) \approx \frac{2 \pi m h}{l^{2} \tau}
$$

This means orbit precession can be used as a test of Newton's theory for the gravitational force being derived from a potential $-k / r$. Using $l^{2}=m k a\left(1-e^{2}\right)$, we obtain an expression for $\dot{\Omega}$ in terms of the perturbation parameter of Kepler's potential $\eta=h / k a$, and orbital parameters:

$$
\dot{\Omega} \approx \frac{2 \pi m h}{l^{2} \tau}=\frac{2 \pi m h}{m k a\left(1-e^{2}\right) \tau}=\frac{2 \pi \eta}{\left(1-e^{2}\right) \tau}
$$

The effect is more pronounced for eccentric and long orbits. The perihelion of Mercury is observed to precess (after correcting for known planetary perturbations) by 43 arc-seconds per century:

$$
\dot{\Omega}=\frac{43 \times(2 \pi / 360) \times(1 / 3600) \mathrm{rad}}{100 \mathrm{yr}}=2.1 \times 10^{-6} \mathrm{rad} / \mathrm{yr}
$$

and thus

$$
\eta \approx \frac{\left(1-e^{2}\right) \tau \dot{\Omega}}{2 \pi} \approx 7.6 \times 10^{-8}
$$

This discrepancy is also (and better) explained by General Relativity.

Prob 3-23: Mass ratio of Sun and Earth

The period and the semi-major axis of elliptical orbits in Kepler's potential are related by $(\tau / 2 \pi)^{2}=a^{3} \mu / k$ where $\mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$ is the reduced mass of the system, and $k=G m_{1} m_{2}$. When $m_{1} \gg m_{2}$, we have $(\tau / 2 \pi) \approx a^{3} / G m_{1}$. For the Earth-Sun system,

$$
\left(\frac{\tau_{e s}}{2 \pi}\right)^{2}=\frac{a_{e s}^{3}}{G M_{s}} .
$$

For the Earth-Moon system,

$$
\left(\frac{\tau_{e m}}{2 \pi}\right)^{2}=\frac{a_{e m}^{3}}{G M_{e}}
$$

Taking ratios, we obtain

$$
\begin{gathered}
\left(\frac{\tau_{e s}}{\tau_{e m}}\right)^{2}=\frac{a_{e m}^{3}}{a_{e m}^{3}} \frac{M_{e}}{M_{s}} \\
\frac{M_{s}}{M_{e}}=\left(\frac{a_{e s}}{a_{e m}}\right)^{3}\left(\frac{\tau_{e m}}{\tau_{e s}}\right)^{2}=\left(\frac{1.5 \times 10^{8}}{3.8 \times 10^{5}}\right)^{3}\left(\frac{27.3}{365}\right)^{2}=3.4 \times 10^{5}
\end{gathered}
$$

The measured value, from http://ssd.jpl.nasa.gov/?constants, is 328900.56 ± 0.02; our estimate is within 3% of this value.

Prob 3-24: Kepler's equation

The energy in Kepler's motion is

$$
E=\frac{1}{2} m \dot{r}^{2}+\frac{l^{2}}{2 m r^{2}}-\frac{k}{r}
$$

For negative energy and elliptical orbits, the energy is $E=-\frac{k}{2 a}$, and the angular momentum is $l^{2}=k m a\left(1-e^{2}\right)$, thus

$$
\begin{aligned}
\dot{r}^{2} & =\frac{2}{m}\left(E-\frac{l^{2}}{2 m r^{2}}+\frac{k}{r}\right) \\
& =\frac{2}{m}\left(-\frac{k}{2 a}-\frac{k a\left(1-e^{2}\right)}{2 r^{2}}+\frac{k}{r}\right) \\
& =\frac{k}{m a r^{2}}\left(-r^{2}-a^{2}\left(1-e^{2}\right)+2 a r\right) \\
& =\frac{k}{m a r^{2}}\left(a^{2} e^{2}-(r-a)^{2}\right)
\end{aligned}
$$

Since the period of the motion is $\tau=2 \pi / \omega$, with $\omega=\sqrt{k / m a^{3}}$, we obtain

$$
\begin{aligned}
\dot{r}^{2} & =\frac{k}{m a r^{2}}\left(a^{2} e^{2}-(r-a)^{2}\right) \\
& =\omega^{2} \frac{a^{2}}{r^{2}}\left(a^{2} e^{2}-(r-a)^{2}\right) \\
\frac{d r}{d t} & =\omega \frac{a}{r} \sqrt{a^{2} e^{2}-(r-a)^{2}} \\
d t & =\frac{1}{a \omega} \frac{r d r}{\sqrt{a^{2} e^{2}-(r-a)^{2}}}
\end{aligned}
$$

which we can use to integrate $t(r)$. Using the orbit equation $r=a(1-e \cos \psi)$, and $d r=e a \sin \psi d \psi$ we obtain

$$
\begin{aligned}
\omega d t & =\frac{1}{a} \frac{r d r}{\sqrt{a^{2} e^{2}-(r-a)^{2}}} \\
& =\frac{1}{a} \frac{a(1-e \cos \psi) e a \sin \psi d \psi}{\sqrt{a^{2} e^{2}-(-a e \cos \psi)^{2}}} \\
& =(1-e \cos \psi) d \psi
\end{aligned}
$$

which can be now trivially integrated into Kepler's equation:

$$
\omega t=\psi-e \sin \psi
$$

Prob 3-33: A particle in a paraboloid of revolution

A particle with coordinates $\mathbf{r}=(x, y, z)$ is constrained to move in a paraboloid f revolution. i.e., $z=r^{2} / a=\left(x^{2}+y^{2}\right)^{2} / a$. We will use generalized polar coordinates r, θ to describe the motion of the particle, with $z=r^{2} / a$. The kinetic energy is

$$
T=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+\dot{z}^{2}\right)=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+4 \frac{r^{2}}{a^{2}} \dot{r}^{2}\right)
$$

The potential energy is

$$
V=-m \mathbf{g} \cdot \mathbf{r}=+m g z=\frac{m g}{a} r^{2}
$$

The Lagrangian is

$$
L=T-V=\frac{1}{2} m \dot{r}^{2}+\frac{1}{2} m r^{2} \dot{\theta}^{2}+2 m \frac{r^{2}}{a^{2}} \dot{r}^{2}-\frac{m g}{a} r^{2}
$$

We see that the coordinate θ is cyclic, so the z-component of the angular momentum is conserved (associated with the symmetry of rotation about the z-axis):

$$
m r^{2} \dot{\theta}=l=\text { constant }
$$

Lagrange's equation for the coordinate r is

$$
\begin{aligned}
\frac{d}{d t}\left(m \dot{r}+2 m \frac{r^{2}}{a^{2}} \dot{r}\right)-m r \dot{\theta}^{2}-4 m \frac{r \dot{r}^{2}}{a^{2}}+\frac{2 m g}{a} r & =0 \\
\left(1+2 \frac{r^{2}}{a^{2}}\right) \ddot{r}-\frac{l^{2}}{m^{2} r^{3}}+\frac{2 g}{a} r & =0
\end{aligned}
$$

There are solutions for circular orbits, with $r^{4}=r_{0}^{4}=l^{2} a /\left(2 g m^{2}\right)$. If the orbit is circular with radius r_{0}, the angular momentum is related to the radius and the speed, $l=m r_{0} v$. We can then find the condition between the speed and the radius for circular orbits: $v^{2}=$ $2 g r_{0}^{2} / a$. If the orbit is only approximately circular, we find an approximate equation for the perturbation $\delta r=r-r_{0}$:

$$
\begin{aligned}
\left(1+2 \frac{\left(r_{0}+\delta r\right)^{2}}{a^{2}}\right) \ddot{\delta r} & =\frac{l^{2}}{m^{2} r_{0}^{3}} \frac{1}{1+\left(\delta r / r_{0}\right)^{3}}-\frac{2 g}{a}\left(r_{0}+\delta r\right) \\
\left(1+2 \frac{r_{0}^{2}}{a^{2}}\right) \ddot{\delta r} & \approx-\frac{2 g}{a} \delta r
\end{aligned}
$$

This equation has a periodic solution, with period $\tau=2 \pi / \omega$, with $\omega^{2}=(2 g / a) /\left(1+2 r_{0}^{2} / a^{2}\right)$.

