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Prob 3-11: Collapse of an orbital system

Consider two particles falling into each other due to gravitational forces, starting from rest
at a distance a. The system has zero angular momentum, with the energy given by

E = T + V =
1
2
mṙ2 − k

r
= −k

a

wherem is the reduced mass of the system, and r is the distance between the masses. Notice
that the value of the energy, −k/a, calculated from the initial condition ṙ = 0, r = a, is
not that of a Kepler’s orbit, −k/2a, because l = 0.

We can derive an equation for r as usual:

dr

dt
=

√
2
m

√
E − V

=

√
2
m

√
k

r
− k

a

dt = −
√
ma

2k

√
rdr√
a− r

=

√
2ma
k

√
a− u2du

where we used the substitution u2 = a − r, and used the fact that dr/dt < 0 to add a
negative sign when taking the square root of ṙ2. We can integrate the equation from the
initial time when u = 0, to the collapse time when u =

√
a, obtaining the time of the fall:

t0 =

√
2ma
k

∫ √
a

0

√
a− u2du =

√
2ma
k

πa

4
= π

√
ma3

8k

If the masses were in a circular orbit of radius a, the period is τ = 2π
√
ma3/k, so the

time of the fall can be expressed as t0 = τ/4
√

2.
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Prob 3-21: A modified Kepler’s potential

Consider a central potential of the form V (r) = −k/r + h/r2. The orbit equation (3.34)
for u(θ) = 1/r(θ) is

d2u

dθ2
+ u = −m

l2
d

du
V = −m

l2
d

du
(−ku+ hu2) =

km

l2
− 2mh

l2
u

d2u

dθ2
+
(

1 +
2mh
l2

)
u =

km

l2

The solution to this equation is of the form

u =
km

l2
+A cos(β(θ − θ0))

with β2 = 1 + 2mh/l2.
This is the equation of a Kepler orbit (parabola, ellipse or hyperbola) in a coordinate

system where the angular coordinate is θ′ = βθ.
A revolution around the origin sweeps a θ angle equal to 2π. If β � 1,there are many

radial oscillations in one revolution; if β ≈ 1, the orbit shows a slow precession. If the
energy is negative and 2mh/l2 � 1, the orbit is a precessing ellipse. In a cycle of the
periodic motion with period τ , the radial coordinate returns to the original value when
β(θ − θ0) = 2π, or

θ − θ0 =
2π
β

=
2π√

1 + 2mh/l2
= 2π − Ω̇τ

The precession speed is then

Ω̇ =
2π
τ

(
1− 1√

1 + 2mh/l2

)
≈ 2πmh

l2τ

This means orbit precession can be used as a test of Newton’s theory for the gravita-
tional force being derived from a potential −k/r. Using l2 = mka(1 − e2), we obtain an
expression for Ω̇ in terms of the perturbation parameter of Kepler’s potential η = h/ka,
and orbital parameters:

Ω̇ ≈ 2πmh
l2τ

=
2πmh

mka(1− e2)τ
=

2πη
(1− e2)τ

The effect is more pronounced for eccentric and long orbits. The perihelion of Mercury is
observed to precess (after correcting for known planetary perturbations) by 43 arc-seconds
per century:

Ω̇ =
43× (2π/360)× (1/3600) rad

100yr
= 2.1× 10−6rad/yr
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and thus

η ≈ (1− e2)τ Ω̇
2π

≈ 7.6× 10−8

This discrepancy is also (and better) explained by General Relativity.

Prob 3-23: Mass ratio of Sun and Earth

The period and the semi-major axis of elliptical orbits in Kepler’s potential are related
by (τ/2π)2 = a3µ/k where µ = m1m2/(m1 +m2) is the reduced mass of the system, and
k = Gm1m2. When m1 � m2, we have (τ/2π) ≈ a3/Gm1. For the Earth-Sun system,(τes

2π

)2
=

a3
es

GMs
.

For the Earth-Moon system, (τem
2π

)2
=

a3
em

GMe
.

Taking ratios, we obtain (
τes
τem

)2

=
a3

em

a3
em

Me

Ms

Ms

Me
=
(
aes

aem

)3(τem
τes

)2

=
(

1.5× 108

3.8× 105

)3(27.3
365

)2

= 3.4× 105

The measured value, from http://ssd.jpl.nasa.gov/?constants, is 328900.56±0.02;
our estimate is within 3% of this value.

Prob 3-24: Kepler’s equation

The energy in Kepler’s motion is

E =
1
2
mṙ2 +

l2

2mr2
− k

r

For negative energy and elliptical orbits, the energy is E = − k
2a , and the angular momen-

tum is l2 = kma(1− e2), thus

ṙ2 =
2
m

(
E − l2

2mr2
+
k

r

)
=

2
m

(
− k

2a
− ka(1− e2)

2r2
+
k

r

)
=

k

mar2
(
−r2 − a2(1− e2) + 2ar

)
=

k

mar2
(
a2e2 − (r − a)2

)
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Since the period of the motion is τ = 2π/ω, with ω =
√
k/ma3, we obtain

ṙ2 =
k

mar2
(
a2e2 − (r − a)2

)
= ω2a

2

r2
(
a2e2 − (r − a)2

)
dr

dt
= ω

a

r

√
a2e2 − (r − a)2

dt =
1
aω

r dr√
a2e2 − (r − a)2

which we can use to integrate t(r). Using the orbit equation r = a(1 − e cosψ), and
dr = ea sinψdψ we obtain

ω dt =
1
a

r dr√
a2e2 − (r − a)2

=
1
a

a(1− e cosψ)ea sinψdψ√
a2e2 − (−ae cosψ)2

= (1− e cosψ) dψ

which can be now trivially integrated into Kepler’s equation:

ωt = ψ − e sinψ

Prob 3-33: A particle in a paraboloid of revolution

A particle with coordinates r = (x, y, z) is constrained to move in a paraboloid f revolution.
i.e., z = r2/a = (x2 + y2)2/a. We will use generalized polar coordinates r, θ to describe the
motion of the particle, with z = r2/a. The kinetic energy is

T =
1
2
m(ṙ2 + r2θ̇2 + ż2) =

1
2
m(ṙ2 + r2θ̇2 + 4

r2

a2
ṙ2)

The potential energy is
V = −mg · r = +mgz =

mg

a
r2

The Lagrangian is

L = T − V =
1
2
mṙ2 +

1
2
mr2θ̇2 + 2m

r2

a2
ṙ2 − mg

a
r2

We see that the coordinate θ is cyclic, so the z-component of the angular momentum
is conserved (associated with the symmetry of rotation about the z-axis):

mr2θ̇ = l = constant

4



Lagrange’s equation for the coordinate r is

d

dt

(
mṙ + 2m

r2

a2
ṙ

)
−mrθ̇2 − 4m

rṙ2

a2
+

2mg
a

r = 0(
1 + 2

r2

a2

)
r̈ − l2

m2r3
+

2g
a
r = 0

There are solutions for circular orbits, with r4 = r40 = l2a/(2gm2). If the orbit is circular
with radius r0, the angular momentum is related to the radius and the speed, l = mr0v.
We can then find the condition between the speed and the radius for circular orbits: v2 =
2gr20/a. If the orbit is only approximately circular, we find an approximate equation for
the perturbation δr = r − r0:(

1 + 2
(r0 + δr)2

a2

)
δ̈r =

l2

m2r30

1
1 + (δr/r0)3

− 2g
a

(r0 + δr)(
1 + 2

r20
a2

)
δ̈r ≈ −2g

a
δr

This equation has a periodic solution, with period τ = 2π/ω, with ω2 = (2g/a)/(1+2r20/a
2).
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