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Problem 3-10: A comet striking a planet

A planet has a very eccentric orbit about the Sun, with eccentricity e = 1−α with α� 1.
When the planet is at the greatest distance from the Sun (aphelion), it is struck by a small
comet traveling in a tangential direction (that is, the collision is head on, with the planet
and comet velocities in the same direction). The collision is inelastic: the comet sticks to
the planet, and momentum is conserved (but energy is not). What is the minimum kinetic
energy the comet must have to make the planet’s orbit parabolic (and unbound)?

The effect of the collision will be to increase the velocity of the planet, from v0 to
vf = v0 + δv. The energy E0 before the collision, which was negative but close to zero, will
increase and now it may be zero or positive: the motion will be unbound. The minimum
change in velocity that will make the energy zero is:

Ef =
1
2
Mv2

f −
k

r
=

1
2
M(v0 + δv)2 − k

r
≈ E0 + Mv0δv

Ef ≥ 0⇒ δv ≥ − E0

Mv0

We use conservation of momentum in the collision, with v the comet’s velocity before
collision:

(M + m)(v0 + δv) = Mv0 + mv ⇒ δv ≈ (m/M)v

where the apporximation is m/M � 1. The minimum comet velocity to unbind the planet
from the Sun is:

v ≥ − E0

mv0

which tells us the minimum kinetic energy the comet must have to unbind the planet

KEc =
1
2
mv2 ≥ 1

2
E2

0

mv2
0

.
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We can find expressions for E0, v0 in terms of α and the semimajor axis a. For elliptical
orbits, the energy is

E0 = − k

2a
.

The eccentricity is related to the angular momentum as:

e =

√
1 +

2E0l2

Mk2

−2E0l
2

Mk2
= 1− e2

l2 = −Mk2

2E0
(1− e2)

= aMk(1− e2)
= aMk(1− (1− α)2)
≈ 2α aMk

The aphelion distance is r = a(1 + e) = a(2− α) ≈ 2a. The angular momentum of the
planet before collision is l = Mrv0 ≈ 2Mav0, and thus

l2 ≈ (2Mav0)2 ≈ 2α aMk ⇒ v2
0 ≈ α

k

2Ma
.

The minimum kinetic energy the comet needs to have to unbind the planet is then

KEc ≥
1
2

E2
0

mv2
0

≈ 1
2m

(−k/2a)2

(αk/2Ma)
=

1
2α

M

m

k

2a
.

This expression says that the comet must have a kinetic energy equal to the energy of
the planet (k/2a), multiplied by two large factors, 1/2α and M/m: quite a large energy is
needed for unbinding a planet, even from a very eccentric orbit....

Problem 3-13: Circular orbit under the influence of a central
force

Assume a particle describes a circular orbit under the influence of an attractive central
force directed towards a point on the circle. Use a generalized angular coordinates cos α
for the particle’s position on the orbit, with the origin of the force at the origin, as shown
in Fig.1.

From the drawing, we see that

r sin θ = R sinα
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Figure 1: Problem 3-13

r cos θ = R(1 + cos α)

from which we obtain the orbit equation:

r = 2R cos θ

We can then use the orbit equation to deduce the potential V (r). The potential energy
is

V (r) = E − T = E −
(

1
2
mṙ2 +

1
2

l2

mr2

)

Taking time derivatives of the orbit equation , we get

ṙ = −2Rθ̇ sin θ.

The angular momentum is related to θ̇ as mr2θ̇ = l, so we then have

ṙ = − 2Rl

mr2
sin θ

Then,

mṙ2 = m

(
− 2Rl

mr2
sin θ

)2

=
4R2l2

mr4
sin2 θ
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=
4R2l2

mr4

(
1− cos2 θ

)
=

4R2l2

mr4

(
1− r2

4R2

)
=

4R2l2

mr4
− l2

mr2

We can now calculate the potential:

V (r) = E − T = E −
(

1
2
mṙ2 +

1
2

l2

mr2

)
= E − 2R2l2

mr4

The force will be

F = −dV

dr
êr = −8R2l2

mr5
êr

Since we can always add any arbitrary constant to the potential, we choose it so that

V (r) = − k

r4

where k = 2R2l2/m. This is equivalent to saying that the total energy of the particle E is
zero.

The effective potential is given by

Veff = V (r) +
l2

2mr2
= − k

r4
+

l2

2mr2
= − l2

2mr2

(
4R2

r2
− 1
)

The effective potential will be ≈ −k/4r4 at short distances: negative, with a positive
slope. At long distances, for non-zero angular momentum, the effective potential will be
≈ l2/2mr2: positive, with a negative slope. There is thus a maximum value where the
slope vanishes, at r2

0 = 8km/l2 = 16R2, where Vmax = l4/4km2. If the energy of a particle
in this potential is less than Vmax, then depending on the initial position, the orbit is either
bounded or unbounded, in both cases with a turning point. For the particular orbit we are
studying, the initial position is smaller than R, and the orbit is bounded. Moreover, the
turning point is at r = 2R, where we see again that E = Veff = 0.

We may find the period from the constant areal velocity and the total area:

dA

dt
=

1
2
r2θ̇ =

l

2m
=

A

τ
=

πR2

τ

τ =
2πmR2

l
= 2πR3

√
m

k
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We can compare this formula with Kepler’s period, τ = 2πa3/2
√

m/k, but we should
remember that the constants k in each case have different units!

We now want an expression for the velocity. Using the orbit equation r = 2R cos θ and
mr2θ̇ = l, we have

v2 = ṙ2 + r2θ̇2

= (−2Rθ̇ sin θ)2 + (2R cos θ)2θ̇2

= 4R2θ̇2

=
4R2l

r2

We see that the velocity approaches infinity as the particle goes through the center of
the force, where r = 0.

Problem 3-19: Yukawa potential

Variations from Newton’s law at long distances are often expressed in terms of a “Yukawa”
potential,

V (r) = −k

r
e−r/a

This potential approximates Newton’s potential at short distances r � a, but it approaches
zero faster than any power law at long distances. (Variations from Newton’s at short
distances are usually expressed as −kr(1− be−r/a)).

Since the force is a central force dependent on r, the equations of motion for a single
particle can be reduced to a one-dimensional equation for r, with θ̇ = l/mr2, and

E =
1
2
mṙ2 +

l2

2mr2
+ V (r) =

1
2
mṙ2 + Veff

Veff(r) =
l2

2mr2
+ V (r) =

l2

2mr2
− k

r
e−r/a =

l2

2m

(
1
r2
− 2mk

l2
e−r/a

r

)
= A

(
1
r2
− e−r/a

br

)
where a and b = l2/2mk are constants with units of distance, and A = l2/2m is a positive
constant. If l 6= 0, at short distances, the potential is Veff ≈ A/r2, and is large, positive,
with a negative slope. At long distances, the potential is also A/r2, since the exponential
terms makes the “gravitational” term in the effective potential decays now faster than 1/r2.
We plot some of the possible shapes of the potential in Fig. 2.

If the angular momentum is large, the negative term in the effective potential will never
dominate, and the effective potential is always positive: the energy has to be positive, and
the orbits will be unbound, with a turning point.

If the angular momentum is small, the Yukawa negative exponential term in the effective
potential will dominate for some rvalues: the effective potential will have negative values,

5



Figure 2: Effective potential for a Yukawa potential, with different values of angular mo-
mentum.

and a minimum value, similar to Kepler’s effective potential. (With Kepler’s potential,
there is always a minimum value for l 6= 0.) In this case, Yukawa’s effective potential will
also have a local maximum value (small, and difficutl to see in the figure).

If the angular momentum is small, and the energy is larger than the local maximum of
the effective potential, the orbits will be unbound with a turning point. There is a positive
(and small) value of the energy which will allow an unstable circular orbit. Positive values
of energy smaller than the local maximum allow for either bound orbits, or unbound orbits
with a turning point, depending on the initial values of the system.

If the angular momentum is small, and the energy is negative, there will be bound
orbits. There is also a minimum value of the energy that will allow a stable circular orbit.

The effective potential will have an extremum (local minimum or maximum) when

d

dr
Veff = 0⇒ e−r/a r

a

(
1 +

r

a

)
= 2

b

a
=

l2

mka
(1)

This equation can be written as

f(x) = e−xx(1 + x) = C

with x = r/a and C a dimensionless constant C = l2/mka. The function f(x) = e−xx(1 +
x), with x = r/a, has a maximum value when x2 = 1 + x, or x0 = (1 +

√
5)/2 = 1.62. The

maximum value is f(x0) = e−x0x3
0 = 0.84.

If the angular momentum is large, l2/mka > f(x0) = 0.84, there is no solution to Eq. 1:
the effective potential has no extrema: it decreases monotonically from Veff = ∞ at r = 0
to Veff = 0, at r =∞.
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If the angular momentum is exactly given by l2/mka = f(x0), then Veff has an inflexion
point that will allow unstable orbits, but there will be no other bound orbits.

If the angular momentum is small, l2/mka < f(x0) = 0.84, there are two solutions to
Eq. 1: the effective potential has two extremum points (there’s no closed form for these
solutions, though: you find them numerically or from plots). One extremum, at r/a < x0,
is the absolute minimum of the effective potential; the other extremum, at r/a > x0, is a
local maximum. The existence of a minimum will allow bound orbits, and a circular orbit;
the existence of a local maximum allows an unstable circular orbit. In the Newtonian limit
when a → ∞, the condition l2 < 0.84mka is always satisfied for l 6= 0: there is always a
minimum, and the local maximum is pushed to r > a→∞.

Let’s assume the angular momentum is small enough to allow bound orbits. The
minimum value of the potential will happen when Eq. 1 is satisfied, for a value r = r0 < a:

e−r0/a r0

a

(
1 +

r0

a

)
= 2

b

a
(2)

The minimum value of the effective potential is

Vmin = A

(
1
r2
0

− e−r0/a

br0

)
= A

(
1
r2
0

− 2b/r0

br0(1 + r0/a)

)
= −A

r2
0

a− r0

a + r0

If the energy is E = Vmin, the orbit will be circular with a radius r0. If the energy is
slightly larger, the orbit will still be bound, with r = r0 + δr, or u = u0 + δu for u = 1/r.
The orbit equation

d2u

dθ2
+ u = −m

l2
d

du
V (1/u) = F (u)

is then an equation for δu(θ), if we use a Taylor expansion of right hand side.
What follows is generic to any central potential:
If F (u) ≈ F (u0) + F ′(u0)δu, then the equation for δu is

d2u

dθ2
+ u = F (u)

d2(u0 + δu)
dθ2

+ (u0 + δu) = F (u0 + δu)

d2δu)
dθ2

+ u0 + δu ≈ F (u0) + F ′(u0)δu

The zeroth order of this equation is an equation for r0 = 1/u0, the radius of the circular
orbit:

u0 = F (u0)
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The first order of the equation is the “orbit” equation for δu:

d2δu

dθ2
+ (1− F ′(u0))δu =

d2δu

dθ2
+ β2δu = 0

This equation has an oscillatory solution with frequency β, with amplitude ∆ and initial
phase θ0 given by initial conditions:

δu = ∆ cos β(θ − θ0)

If β = 1 (F ′(u0) = 0), the orbit u = u0 + δu is an ellipse. Since we have assumed δu� u0,
the amplitude must also satisy ∆� u0, and the “ellipse” will be a slightly distorted circle.

In general, the angular position of the turning points, with u̇ = 0, are given by sinβ(θ−
θ0) = 0, or θ − θ0 = 2π/β. If β is a rational fraction, β = p/q, the orbit will be closed:
after p cycles in r, the particle will have made q turns about the origin and will return to
the same radial position. If β is not a rational fraction, the orbit will not be closed: the
particle never return to the same turning point.

If β = 1 + ε, with ε � 1, the orbit will be precessing. A cycle in r (between two
minimum or two maximum radial distances) will sweep an angle 2π/β ≈= 2π(1− ε), that
is, it will have precessed by an angle −2πε: if ε > 0, the orbit precesses backwards; if ε < 0,
the orbit precesses forward.

Back to the Yukawa problem now: The potential is V (r) = −k
r e−r/a, so the force is

V (u) = −kue−1/au

F (u) = −m

l2
dV

du

=
mk

l2

(
1 +

1
au

)
e−1/au =

1
2b

(
1 +

1
au

)
e−1/au

The equation for the circular orbit is

u0 = F (u0) =
1
2b

(
1 +

1
au0

)
e−1/au0

which is, of course, the same equation as Eq. 2, and admits two solutions: one stable
circular orbit with r0 < 1.62a for the minimum of the effective potential; another unstable
circular orbit with r0 > 1.62a near the maximum of the effective potential.

To get the precession of the orbit, we need F ′(u0) :

F (u) =
1
2b

(
1 +

1
au

)
e−1/au

F ′(u0) =
1
2b

(
− 1

au2
0

+
1

au2
0

(
1 +

1
au0

))
e−1/au0
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=
1

2a2bu3
0

e−1/au0

=
1

2a2bu3
0

2bu0

1 + 1/au0

=
1

au0

1
1 + au0

β =
√

1− F ′(u0)

=
√

1− 1
au0

1
1 + au0

=

The stable, smaller circular orbit has au0 > 1.62; the unstable, larger circular orbit has
au0 < 1.62.

If au0 � 1 (orbits near the maximum in a a strong Yukawa potential) then β ≈
1− 1/2au0, and the orbit precesses forward by πr0/a:

θ1 =
2π

β
≈ 2π

1− 1
2au0

≈ 2π

(
1 +

1
2au0

)
= 2π + π

r0

a

Problem 3-28: A magnetic monopole

Assume a magnetic field B = br/r3 = bêr/r2, and a particle moving in the field of that
magnetic monople, and a central force field derived from a potential V (r) = −k/r.

The magnetic force is FB = qṙ×B, and the central force is F = −kr/r3.
The torque is not zero, thus the angular momentum is not conserved:

dL
dt

= N = r× F

= r×
(

qṙ×B− k

r3
r
)

= r× (qṙ×B)
= qṙ(r ·B)− qB(r · ṙ)

= qṙ
b

r
− q

br
r3

(rṙ)

= qb

(
ṙ
r
− ṙ

r
r2

)
=

d

dt

(
qb

r
r

)
and thus the vector D = L− qbr/r is conserved, since dD/dt = 0.
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