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1. Derivation 2-4: Geodesics on a spherical surface

Points on a sphere of radius R are determined by two angular coordinates, an az-
imuthal angle ψ and a polar angle θ:

r = x̂i + yĵ + zk̂ = R(sinψ cos θî + sinψ sin θĵ + cosψk̂)

When moving on the sphere, the differential arc length ds is

ds2 = dx2 + dy2 + dz2

= R2((cosψ cos θdψ − sinψ sin θdθ)2 + (cosψ sin θdψ + sinψ cos θdθ)2 + (− sinψdψ)2)
= R2(dψ2 + sin2 ψdθ2)

The distance on the sphere between two points is then

l =
∫
ds = R

∫ √
dψ2 + sin2 ψdθ2 = R

∫
dθ

√(
dψ

dθ

)2

+ sin2 ψ = R

∫
dθf(ψ,ψ′)

We can use a variational principle for finding the path with minimum length between
two point. The path is described by a function ψ(θ), and the (differential) equation for
ψ can be obtained from the Euler-Lagrange equation using f(ψ,ψ′) =

√
sin2 ψ + ψ′2.

Back to the variational principle: the equation for ψ is

0 =
d

dθ

∂f

∂ψ′ −
∂f

∂ψ′

=
d

dθ

(
ψ′

f

)
− sinψ cosψ

f

=
ψ′′

f
− ψ′f ′

f2
− sinψ cosψ

f

=
ψ′′

f
− ψ′

f2

ψ′ sinψ cosψ + ψ′ψ′′

f
− sinψ cosψ

f
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0 = (ψ′′ − sinψ cosψ)f2 − ψ′2(ψ′′ + sinψ cosψ)
0 = (ψ′′ − sinψ cosψ)(ψ′2 + sin2 ψ)− ψ′2(ψ′′ + sinψ cosψ)

= ψ′′ sin2 ψ − 2ψ′2 sinψ cosψ − sin3 ψ cosψ

This looks like a complicated equation to solve! It’s always useful if we know the
solution before we obtain it, admittedly not the most common case, but true in this
case. We know that the shortest path between points in the sphere are great circles.
Great circles are the intersection between the sphere and a plane. If the unit vector
normal to the plane as n̂ = âi+ b̂j+ ck̂, the points in the great circle are those points
in the sphere that satisfy n̂ · r = 0 = R(sinφ(a cos θ + b sin θ) + c cosψ), or those
points with coordinates ψ, θ satisfying

cosψ
sinψ

= A cos θ +B sin θ

with A2 +B2 < 1. If we define a function q(θ) = cosψ(θ)/ sin(ψ(θ)), we are looking
for an equation of the form d2q/d2θ = −q. If q = 1/ tanψ, then q′ = −ψ′/ sin2 ψ,
and q′′ = −ψ′′/ sin2 ψ + 2ψ′2 cosψ/ sin3 ψ. Lagrange’s equation can then be written
as

0 = −q′′ sin4 ψ − sin3 ψ cosψ
q′′ = − cosψ/ sinψ = −q

which is the equation we were looking for, with a general solution

q =
cosψ
sinψ

= A cos θ +B sin θ

which we know describes points on a great circle.

2. Exercise 2-14: A hoop rolling on a cylinder

We can find out the angle at which the hoop falls from the cylinder by obtaining an
expression for the normal force on the hoop as a function of the position of the hoop:
the hoop will fall off when the normal force vanishes.

We set up a coordinate system with the origin at the center of the cylinder, and
describe the center of mass of the hoop with polar coordinates r, θ, and an angular
coordinate φ for the rotation about the hoop’s axis, as shown in the figure.

The kinetic energy is

T =
1
2
mv2 +

1
2
Iω2 =

1
2
m(ṙ2 + r2θ̇2) +

1
2
ma2φ̇2
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and the potential energy is

V = −mg · r = mgr sin θ

The Lagrangian is

L = T − V =
1
2
m(ṙ2 + r2θ̇2) +

1
2
ma2φ̇2 −mgr sin θ

There are two constraints while the hoop is rolling on the cylinder :

f1 = r − (R+ a) = 0 (1)
f2 = (R+ a)θ̇ + aφ̇ = 0 (2)

Note that if the hoop is rolling down, θ̇ < 0 and φ̇ > 0, if the angles are defined like in
the figure. The rolling constraint is formulated setting up the velocity of the contact
point instantaneously equal to zero, and expressing it as the velocity of the center
of mass rθ̇, plus the velocity with respect to the center of mass, aφ̇. The equivalent
condition for the hoop rolling on a plane is ẋ+ aφ̇ = 0.

The first constraint f1 is holonomic, and we’ll associate with it a Lagrange multiplier
λ (which will be related to the normal force of the cylinder on the hoop). The second
constraint is semi-holonomic, i.e., it depends on velocities but it could be integrated
into a holonomic constraint. We will associate a Lagrange multiplier µ with it, which
will be related to the friction force producing the rolling.

There are three Lagrange’s equations for the coordinates r, θ, φ:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= λ

∂f1

∂qj
+ µ

∂f2

∂q̇j

mr̈ −mrθ̇2 +mg sin θ = λ (3)
2mrṙθ̇ +mr2θ̈ +mgr cos θ = µ(R+ a) (4)

ma2φ̈ = µa (5)
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We have then 5 equations (1)...(5) for five unknowns, r, θ, φ, λ, µ.

We use the first constraint to solve for the coordinate r: r = R + a, ṙ = r̈ = 0. We
use this solution in Lagrange’s equations for r, θ:

−m(R+ a)θ̇2 +mg sin θ = λ (6)
m(R+ a)2θ̈ +mg(R+ a) cos θ = µ(R+ a) (7)

We use the rolling constraint to find an expression for φ as a function of θ:

φ = −a+R

a
θ + φ0 (8)

and use this in Lagrange’s equation (5) for φ to obtain

µ = maφ̈ = −m(R+ a)θ̈ (9)

We use this expression for µ in (7), and obtain an equation for θ̈:

θ̈ = − g

2(R+ a)
cos θ (10)

We can integrate this equation by multiplying by θ̇:

θ̈ +
g

2(R+ a)
cos θ = 0

θ̈θ̇ +
g

2(R+ a)
θ̇ cos θ = 0

d

dt

(
1
2
θ̇2 +

g

2(R+ a)
sin θ

)
= 0

1
2
θ̇2 +

g

2(R+ a)
sin θ = C

If the hoop starts from rest at the top, then θ̇ = 0 when θ = π/2, which tells us the
value of the constant of integration C:

θ̇2 =
g

R+ a
(1− sin θ) (11)

We now use this in Eq.(6), to get an expression for the normal force as a function of
the angle θ:

λ = −m(R+ a)θ̇2 +mg sin θ
= −mg(1− sin θ) +mg sin θ

λ = mg(2 sin θ − 1) (12)
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At the top, when θ = π/2, we obtain λ = mg, as expected for the normal force. If
we try to apply this equation at the bottom, when θ = 0, we obtain a negative value
for λ, which tells us that the formulation of the problem cannot apply at that point,
since the normal force cannot be negative. Equation (12) tells us that if sin θ < 1/2,
the multiplier λ becomes negative: this is the angle at which the hoop falls from the
cylinder, θ = 30◦.

3. Exercise 2-18: A bead on a rotating hoop

A bead with mass m can slide without friction on a vertical hoop of radius a. The
hoop is rotating along a vertical diameter with constant angular velocity ω.

Take the origin of a coordinate system at the center of the hoop, with the z-axis
pointing down, along the rotation axis. If we use spherical coordinates r, ψ, θ to
describe the position the mass, we know that r = a and θ̇ = ω, so the only generalized
coordinate needed to describe the mass’ postion is ψ. The kinetic energy is

T =
1
2
mv2

=
1
2
m

(
ṙ2 + r2ψ̇2 + r2 sin2 ψθ̇2

)
=

1
2
ma2

(
ψ̇2 + ω2 sin2 ψ

)
The potential energy due to the gravitational acceleration g = gk̂ (since the z-
axispoints down) is

V = −mg · r
= −mgz
= −mga cosψ

The Lagrangian is

L = T − V =
1
2
ma2ψ̇2 +

1
2
ma2ω2 sin2 ψ +mga cosψ

Lagrange’s equation of motion is

0 =
d

dt

∂L

∂ψ̇
− ∂L

∂ψ

= ma2ψ̈ −ma2ω2 sinψ cosψ +mga sinψ

aψ̈ = −g sinψ
(

1− aω2

g
cosψ

)
(13)

The Lagrangian has ∂L/∂ψ̇ 6= 0, so the canonical momentum conjugate to ψ, pro-
portional to the angular momentum component Lz, is not conserved.

5



However, the Lagrangian does not depend explicitly on time, so there is an integral
of motion:

hψ =
∂L

∂ψ̇
ψ̇ − L

=
1
2
ma2ψ̇2 − 1

2
ma2ω2 sin2 ψ −mga cosψ

ψ̇2 =
2hψ
ma2

+ ω2 sin2 ψ + 2
g

a
cosψ

The integral of motion is not the total energy E = T + V , but it is related to the
energy by hψ = E −ma2ω2 sin2 ψ.

For the mass to remain stationary on the hoop, we need ψ = ψ0 and ψ̇ = ψ̈ = 0.
From Eq. ??, we see that is possible only if sinψ0 = 0 (top or bottom of the hoop),
or cosψ0 = g/aω2, which is possible only if the hoop’s velocity is high enough so that
g/aω2 < 1.

If the mass starts near the bottom, where ψ � 1, we can use a small angle approxi-
mation in the equation of motion, and

aψ̈ ≈ −gψ(1− aω2/g).

If the angular velocity is not larger than ω2
0 = g/a, this equation describes a harmonic

oscillator with frequency Ω2 = (g/a)(1 − aω2/g) = g′/a. The mass oscillates as the
pendulum bob of a pendulum with length a, in a gravitational acceleration reduced
by the rotation, g′ = g(1− aω2/g) 1.

In general, if aω2/g < 1, the acceleration given by Eq. ?? will be always negative
(since sinψ > 0), and will drive the mass to the bottom, making it oscillate about
the lowest point (unless it starts there with zero velocity, when it will stay at the
bottom).

If the angular velocity is larger than ω2
0 = g/a, there is angle α given by cosα =

g/aω2, where the acceleration given by Eq.?? is zero. If the mass starts near such a
point, we can define a small angle ψ′ = ψ − α� 1, so that ψ̈′ = ψ̈, and use Eq.??:

ψ̈′ = −g
a

sinψ
(

1− ω2a

g
cosψ

)
= −g

a
sin(ψ′ + α)

(
1− ω2a

g
cos(ψ′ + α)

)
1Strictly speaking, the angular coordinate ψ can only be positive, so it cannot oscillate about zero, which

is a singular point for the spherical coordinate system. However, we could define another coordinate system
where the point at the bottom of the hopp is not singular, and we would obtain the same SHO equation of
motion.
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= −g
a

(
sinψ′ cosα+ cosψ′ sinα

) (
1− ω2a

g

(
cosψ′ cosα− sinψ′ sinα

))
≈ −g

a
sinα

(
1− cosψ′ +

ω2a

g
sinα sinψ′

)
≈ −(ω2 sin2 α)ψ′

The equation for ψ′ is again that of a simple harmonic oscillator, with frequency
Ω2 = ω2 sin2 α: a smaller frequency than the hoop’s angular frequency. For very high
rotation frequencies ω2 � a/g, we have cosα ∼ 0 (α ∼ π/2), sinα ∼ 1, and Ω ∼ ω:
the mass stays in the center of the hoop, in a constant position relative to the hoop’s
coordinate system.

4. Exercise 2-19: Symmetries and conserved quantities

We consider the gravitational forces created on particles by different mass distri-
butions. If the mass distribution has a particular symmetry, so will the potential
associated with the force, and so will the Lagrangian. Since symmetries are associ-
ated with conserved quantities through Noether’s theorem, we can find the conserved
quantities: translational symmetries are associated with components of the linear
momentum; rotational symmetries with components of the angular momentum, and
time independence with conservation of energy. Since the potential is fixed in all
cases (i.e., independent of time), the energy is conserved in all systems.

(a) The mass is uniformly distributed in the plane z = 0 (an infinite, flat, Earth):
the forces do not depend on the coordinates x, y, and thus the components of
the linear momentum px, py will be conserved. Also, the force is invariant under
a rotation about the z axis, so Lz is conserved.

(b) The mass is uniformly distributed in the half plane z = 0, y > 0 (a finite, flat,
Earth, like Columbus feared): there’s only translational symmetry with respect
to x, and no rotational symmetries: only px will be conserved.

(c) The mass is uniformly distributed in a circular cylinder of infinite length, with
axis along the z-axis: the configuration has translational symmetry along z, and
rotational symmetry about z, so pz and Lz are conserved.

(d) The mass is uniformly distributed in a circular cylinder of finite length, with
axis along the z-axis: there is now no translational symmetry, but there is still
rotational symmetry about z: only Lz is conserved.

(e) The mass is uniformly distributed in a right cylinder of elliptical cross section
and infinite length, wit axis along the z axis: there is now no rotational symme-
try, but because the cylinder is infinite along z, there is translational symmetry
along z: only pz is conserved.
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(f) The mass is uniformly distributed in a dumbbell whose axis is oriented along
the z axis: no translational symmetries, but there is rotational symmetry about
the z axis, so Lz is conserved.

(g) The mass is the form of a uniform wire wound in the geometry of an infinite
helical solenoid, with axis along the z axis. There are no pure translational
or rotational symmetries, but there is a symmetry combining a z-translation of
distance h (the distance between coils), and a rotation about z of 2π. Thus,
although pz or Lz are not individually conserved, hpz + Lz will be conserved.

5. Exercise 2-20: A particle on a sliding wedge

A mass m is sliding down without friction along a wedge with angle α and mass M .
The wedge can move without friction on a smooth horizontal surface.

There are two objects in the problem, the mass m and the wedge M . The edge is a
rigid body, but since it cannot rotate, it is described by the coordinates of just one
point, say the top corner. We can treat the problem as a two dimensional problem
so we have two coordinates for each mass. Let us choose a coordinate system with
the origin at the initial position of the top of the wedge, with a horizontal x-axis and
a vertical y-axis pointing down, as shown in the figure.

Figure 1: Problem 2-20: a mass sliding down a sliding wedge.

The coordinates of the top corner of the wedge will be R = (X, 0). The coordinates
of the mass sliding down the wedge are r = (x, y). The constraint that the mass is
on the wedge is

r = R + l(cosα, sinα) , or
x = X + l cosα and
y = l sinα
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where l is the distance the mss traveled down the wedge. This is one constraint,
which we can express as a function of x, y,X as

f = (x−X) sinα− y cosα = 0.

The kinetic energy of the system is

T =
1
2
m(ẋ2 + ẏ2) +

1
2
MẊ2.

The potential energy is just gravitational, with g = gĵ. The gravitational potential
energy of the wedge is constant, so we can ignore it. The gravitational potential
energy of the mass m is

V = −mg · r = −mgy

The Lagrangian is

L = T − V =
1
2
m(ẋ2 + ẏ2) +

1
2
MẊ2 +mgy (14)

There are three Lagrange equations, for qi = X,x, y, which together with the con-
straint, form a system of four equations for the four variables X,x, y, λ (where λ is
the Lagrange multiplier associated with the constraint).

d

dt

∂L

∂q̇i
− ∂L

∂qi
= λ

∂f

∂qi
mẍ = λ sinα

mÿ −mg = −λ cosα
MẌ = −λ sinα

The equations for x,X can be added and result in

mẍ+MẌ = 0

This equation is saying that the horizontal position of the center of mass of the system
has a constant velocity: we know this, since the only external force is gravity, and it
is vertical (Notice that the figure does not represent the actual motion then!).

We can assume the initial position of the mass is at the top of the wedge, and the
initial velocity of the center of mass is zero, and then we have a solution for X in
terms of x:

X = −mx/M.
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We can use the constraint to solve x in terms of y (or viceversa):

y = (x−X) tanα = x(1 +m/M) tanα.

We can also use Lagrange’s equation for y to solve for λ, and use these results in
Lagrange’s equation for x:

mẍ = λ sinα = m(g − ÿ) tanα
= m tanα(g − ẍ(1 +m/M) tanα)

(1 + (1 +m/M) tan2 α)ẍ = g tanα
1 + (m/M) sin2 α

cos2 α
ẍ = g tanα

ẍ = g
sinα cosα

1 + (m/M) sin2 α

ẍ = ax

The acceleration of x is constant, and the general solution is x = x0+v0xt+(1/2)axt2.
Since we assumed the mass started at the origin, x0=0. If the mass starts from rest,
v0x = 0. We can now use this result to obtain the equation for y:

ÿ = ẍ(1 +m/M) tanα

= g
sinα cosα

1 + (m/M) sin2 α
(1 +m/M) tanα

= g sin2 α
1 +m/M

1 + (m/M) sin2 α
= ay

The acceleration of the mass along the direction tangent to the wedge is

as = ax cosα+ ay sinα

= g
sinα cosα

1 + (m/M) sin2 α
cosα+ g sin2 α

1 +m/M

1 + (m/M) sin2 α
sinα

= g sinα

The solutions for X,λ are:

Ẍ = −mẍ/M

= −g m
M

sinα cosα
1 + (m/M) sin2 α

= −aM
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λ =
m

sinα
ẍ

= mg
cosα

1 + (m/M) sin2 α

The multiplier λ is the normal force from the wedge on the mass: it is mg if the
wedge is horizontal (α = 0), and it is smaller as the wedge is steeper α→ π/2.

If the wedge has a large mass (M � m), it does not move much (Ẍ ≈ 0), and the
system approximates that of a mass sliding down a fixed incline. The tangential
acceleration approximates as ≈ g sinα, and the normal force approximates λ ≈
mg cosα, as it should be well known.

The constraint force, the normal force, is always perpendicular to the wedge: N =
λ(sinα,− cosα). If the wedge is fixed, this is perpendicular to the mass’ motion,
but if the wedge is not fixed, it will have a component along the mass’ velocity: the
constraint force works on the particle. The work done in time t by the force N on
the mass m is given by:

dWm

dt
= N · v

= λ(ẋ sinα− ẏ cosα)
= λt(ax sinα− ay cosα)

= λgt sin2 α cosα
m/M

1 + (m/M) sin2 α

The work done by the normal force tends to zero as m/M as the wedge mass M gets
large. The constraint force also works on the wedge:

dWM

dt
= N ·V

= λẊ sinα
= −λ(mẋ/M) sinα
= −λ(m/M)axt sinα

= −λgt sin2 α cosα
m/M

1 + (m/M) sin2 α

That is, the net work done by the constraint on the system is zero.

To find out conserved quantities, we need to express the Lagrangian ?? in terms of
independent coordinates. If we use the constraint to solve for X, we get

X = x− y

tanα
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L =
1
2
m(ẋ2 + ẏ2) +

1
2
MẊ2 +mgy

=
1
2
m(ẋ2 + ẏ2) +

1
2
M

(
ẋ− ẏ

tanα

)2

+mgy

The coordinate x is cyclical, so its canonical momentum is a constant of motion:

px =
∂L

∂ẋ
= (m+M)ẋ−M ẏ

tanα

This can also be obtained from the solutions, since ẋ = axt, ẏ = ayt and ay =
ax(1 +m/M)/ tanα.

The Lagrangian does not depend explicitly on time, so there is a Jacobi integral,
which is equal to the total energy E = T + V .

6. A carriage on rotating cross-rails

The position vector of the mass m in the inertial frame is r = x̂i+yĵ. The coordinates
x, y are related to the spring lengths R, r, where the length R of the spring with force
constant K and rest length R0, and the length r of the spring on the perpendicular
rail with force constant k (and zero rest length). We can express x, y in terms of R, r:

x = R cosωt− r sinωt
y = R sinωt+ r cosωt

or R, r in terms of x, y:

R = x cosωt+ y sinωt
r = −x sinωt+ y cosωt

We can choose as generalized coordinates x, y (natural coordinates in the inertial lab
frame) or R, r (natural coordinates in the rotating frame).

The kinetic energy is

T =
1
2
(ẋ2 + ẏ2)

=
1
2
m((Ṙ− rω)2 + (ṙ + ωR)2)

=
1
2
m(Ṙ2 + ṙ2 + 2ω(Rṙ − Ṙr) + ω2(r2 +R2))
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The potential energy is

V =
1
2
K(R−R0)2 +

1
2
kr2

=
1
2
K(x cosωt+ y sinωt−R0)2 +

1
2
k(−x sinωt+ y cosωt)2

In terms of x, y, the Lagrangian is

L = T − V

=
1
2
m(ẋ2 + ẏ2)− 1

2
K(x cosωt+ y sinωt−R0)2 −

1
2
k(−x sinωt+ y cosωt)2

Since the Lagrangian depends explicitly on time, we know the energy function is not
conserved. Because the potential does not depend on time derivatives ẋ, ẏ, and the
kinetic energy is homogeneous of second degree in ẋ, ẏ, we know that the energy
function is the mechanical energy, and is not conserved:

h =
∑

q̇i
∂L

∂q̇i
− L

= ẋ
∂L

∂ẋ
+ ẏ

∂L

∂ẏ
− L

=
1
2
m(ẋ2 + ẏ2) +

1
2
K(x cosωt+ y sinωt−R0)2 +

1
2
k(−x sinωt+ y cosωt)2

= T + V = E

If we now instead choose R, r as our generalized coordinates, the Lagrangian is

L = T − V

=
1
2
m(Ṙ2 + ṙ2 + 2ω(Rṙ − Ṙr) + ω2(r2 +R2))− 1

2
K(R−R0)2 −

1
2
kr2

=
1
2
m(Ṙ2 + ṙ2) +mω(Rṙ − Ṙr) +

1
2
mω2(r2 +R2)− 1

2
K(R−R0)2 −

1
2
kr2

and is independent of time, so the “energy function” or “Jacobi integral” will be
conserved. However, since the kinetic energy is not homogenous of second degree in
Ṙ, ṙ, then the energy function is not equal to the mechanical energy.

The Jacobi integral is

h′ =
∑

q̇i
∂L

∂q̇i
− L
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= ṙ
∂T

∂ṙ
+ Ṙ

∂T

∂Ṙ
− (T − V )

= mṙ(ṙ + ωR) +mṘ(Ṙ− ωr)− T + V

= mṙ2 +mṘ2 +mω(Rṙ − rṘ)− T + V

=
1
2
m(Ṙ2 + ṙ2)− 1

2
mω2(r2 +R2) +

1
2
K(R−R0)2 +

1
2
kr2

= T + V −mω(Rṙ − Ṙr)− 1
2
mω2(r2 +R2)

We see that if the beams are not rotating, ω = 0 and h = T + V = E. With the
rotation on, the mechanical energy is not conserved, and the rate of change of the
energy is

dE

dt
=

d

dt

(
h+mω(Rṙ − Ṙr) +

1
2
mω2(r2 +R2)

)
= mω(Rr̈ − rR̈) +mω2(rṙ +RṘ) (15)

(The following was not asked in the homework, but it has more interesting facts
about this system).

We can find expressions for the rate of change in energy from Lagrange’s equations
of motion for R, r, which we can find from the Lagrangian:

L =
1
2
m(Ṙ2 + ṙ2) +mω(Rṙ − Ṙr) +

1
2
mω2(r2 +R2)− 1

2
K(R−R0)2 −

1
2
kr2

=
1
2
m(Ṙ2 + ṙ2)− U − V

We have written the Lagrangian as the kinetic energy in the (non-inertial) rotating
system, minus the potential energy in the inertial system, minus an extra potential
U due to the rotation of the frame:

U(r,R, ṙ, Ṙ) = −mω(Rṙ − Ṙr)− 1
2
mω2(r2 +R2).

The forces derived from this potential are the “centrifugal forces”, and they are not
conservative (they depend on velocities).

Lagrange’s equations are

0 =
d

dt

∂L

∂ṙ
− ∂L

∂r

mr̈ =
d

dt

∂U

∂ṙ
− ∂(U + V )

∂r

mr̈ = −mωṘ+mω2r − kr
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0 =
d

dt

∂L

∂Ṙ
− ∂L

∂R

mR̈ = − d

dt

∂U

∂Ṙ
− ∂(U + V )

∂r

mR̈ = mωṙ +mω2R−K(R−R0)

From these equations, we can find an expression for the combinations we need for
power in Eq(??):

dE

dt
= mω(Rr̈ − rR̈) +mω2(RṘ+ rṙ) = ωr(−kR+K(R−R0))

The equilibrium coordinates are the solutions to ṙ = r̈ = Ṙ = R̈ = 0, which are r = 0
and R = R0/(1−mω2/K). The equilibrium position for the K spring is not R0, but
a smaller length. If the system rotates too fast, and ω2 ≥ K/m, the cross rail will be
pushed against the rotation axis. Assuming small oscillations about the equilibrium
length, and defining ξ = R−R0/(1−mω2/K), the equations of motion are

mr̈ = −mωξ̇ − (k −mω2)r

mξ̈ = mωṙ +mω2

(
ξ +

R0

1−mω2/K

)
−K

(
ξ +

R0

1−mω2/K
−R0

)
= mωṙ − (K −mω2)ξ

We see that the springs are “softened” by the rotation, and the oscillations in the
different directions are coupled. We will learn how to find solutions to the equations
of motion of these systems in Chapter 6.
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