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September 18, 2006

1. Derivation 1-9: Gauge transformations for electromagnetic potential

If two Lagrangians differ by a total derivative of a function of coordinates and time,
they lead to the same equation of motion:

L′(qi, q̇i, t) = L(qi, q̇i, t) +
dF (qi, t)

dt
= L(qi, q̇i, t) +

∂F

∂t
+

∑
j

∂F

∂qj
q̇j

as proven in the following lines:

∂L′

∂q̇i
=
∂L′

∂q̇i
+
∂F

∂qi

∂L′

∂qi
=
∂L

∂qi
+

∂

∂qi

dF

dt

d

dt

∂L′

∂q̇i
− ∂L′

∂qi
=

d

dt

∂L

∂q̇i
− ∂L

∂qi
+
d

dt

∂F

∂qi
− ∂

∂qi

dF

dt

d

dt

∂F

∂qi
=

 ∂

∂t
+

∑
j

q̇j
∂

∂qj

 ∂F

∂qi

=
∂

∂qi

∂F

∂t
+

∑
j

q̇j
∂F

∂qj


=

∂

∂qi

dF

dt

and thus the equations of motion are the same, derived from either Lagrangian:

d

dt

∂L′

∂q̇i
− ∂L′

∂qi
=

d

dt

∂L

∂q̇i
− ∂L

∂qi
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(What goes wrong if F = F (q, q̇, t)?)

A particle moving in an electromagnetic field, with scalar potential φ and vector
potential A, has a generalized potential function U = φ−A · v and a Lagrangian

L = T − U =
1
2
mv2 − q (φ−A · v)

Consider a gauge transformation for the scalar and vector potentials of the form

φ′ = φ− ∂ψ(r, t)
∂t

A′ = A +∇ψ(r, t)

The change in potential energy under this transformation is

U ′ = φ′ −A′ · v

= U − q
(
∂ψ

∂t
+∇ψ · v

)
= U − q

(
∂ψ

∂t
+∇ψ · dr

dt

)
= U − q

(
∂ψ

∂t
+

∑ ∂ψ

∂xi

dxi
dt

)
= U − q dψ

dt

and thus, the new Lagrangian differs from the original one by a total derivative:

L′ = T − U ′ = T − U + q
dψ

dt
= L+

d(qψ)
dt

and thus we know the equations of motion are the same.

We can also see that the electromagnetic forces (and thus Newton’s equations) are
invariant. The forces are derived from the potential, following (1.58):

Qi = −∂U
∂qi

+
d

dt

∂U

∂q̇i

If U = q(φ(r, t)−A(r, t) · v), then the force is

Qi = −q ∂

∂xi
(φ−A · v) + q

d

dt

∂

∂vi
(φ−A · v)

= −q ∂φ
∂xi

+ q
∂

∂xi
(A · v)− q dAi

dt

2



= −q ∂φ
∂xi

+ q
∂

∂xi
(A · v)− q

 ∂

∂t
+

∑
j

ẋj
∂

∂xj

A

F = −q
(
∇φ+

∂A
∂t

)
+ q∇(A · v)− q(v · ∇)A

= −q
(
∇φ+

∂A
∂t

)
+ qv × (∇×A)

= q(E + v ×B)

and, as we know, the electric and magnetic fields are invariant under the gauge
transformation:

E′ = −∇φ′ − ∂A′

∂t

= −∇(φ− ∂ψ

∂t
)− ∂

∂t
(A +∇ψ)

= −∇φ− ∂A
∂t

+∇∂ψ
∂t
− ∂

∂t
∇ψ

= −∇φ− ∂A
∂t

= E

B′ = ∇×A′ = ∇× (A +∇ψ)
= ∇×A +∇×∇ψ = ∇×A

= B

2. Problem 1-15: A potential for spin interactions

Consider a point particle moving in space under the influence of a force derivable
from a generalized potential:

U(r,v) = V (r) + σ · L

We can derive the generalized forces using (1.58):

Qi = −∂U
∂qi

+
d

dt

∂U

∂q̇i

using either Cartesian coordinates (x, y, z) or spherical polar coordinates (r, ψ, θ) for
generalized coordinates qi. The first choice will produce the components of the force
vector Fi; the generalized forces for any other choice of generalized coordinates (such
as spherical coordinates) will be related to the force vector as in (1.49):

Qi =
∑
j

Fj ·
∂rj
∂qi
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This problem is a marathon in vector calculus in different coordinate systems. We
first calculate the force vector using Cartesian coordinates:

U = V (r) + σ · L
= V (r) + σ · (r×mv)

= V (r) +m
∑
l

σl(r×mv)l

= V (r) +m
∑
l

σl
∑
m,n

εlmnxmẋn

= V (r) +m
∑
l,m,n

εlmnσlxmẋn

∂U

∂ẋi
= m

∑
l,m

εlmiσlxm

d

dt

∂U

∂ẋi
= m

∑
l,m

εlmiσlẋm = (σ × p)i

∂U

∂xi
=

∂V (r)
∂xi

+m
∑
ln

εlinσlẋn

=
dV (r)
dr

∂r

∂xi
−m

∑
ln

εilnσlẋn

=
dV (r)
dr

xi
r
− (σ × p)i

Fi = −∂U
∂qi

+
d

dt

∂U

∂q̇i

F = −dV (r)
dr

êr + 2(σ × p)

Now we want to calculate the generalized forces in spherical polar coordinates r, ψ, θ.
We first need to express the potential in terms of the coordinates and their derivatives.
We will use unit vectors êr, êψ, êθ, which are themselves functions of the coordinates
and time:

êr = sinψ cos θî+ sinψ sin θĵ + cosψk̂

êψ = cosψ cos θî+ cosψ sin θĵ − sinψk̂

êθ = − sin θî+ cos θĵ

They are orthogonal and cyclical: êi × êj = εijkêk but they are not constant: in
general ∂êi/∂qj 6= 0, and also dêi/dt 6= 0.
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We first calculate the angular momentum in spherical coordinates:

r = rêr

v =
d

dt
(rêr) = ṙêr + rψ̇êψ + r sinψθ̇êθ

L = r× p = r×mv

= mrêr × (ṙêr + rψ̇êψ + r sinψθ̇êθ)
= mr2(ψ̇êθ − sinψθ̇êψ)

so the potential, in terms of generalized coordinates r, ψ, θ is

U = V (r) + σ · L = V (r) +mr2σ · (ψ̇êθ − sinψθ̇êψ)

We can now calculate the generalized forces:

Qr = −∂U
∂r

+
d

dt

∂U

∂ṙ
= −∂U

∂r

= −dV
dr
− 2mrσ · (ψ̇êθ − sinψθ̇êψ)

= −dV
dr
− 2
r
σ · L = −dV

dr
+ 2êr · (σ × p)

Qψ = −∂U
∂ψ

+
d

dt

∂U

∂ψ̇

= −mr2σ · ∂
∂ψ

(ψ̇êθ − sinψθ̇êψ) +
d

dt
(mr2σ · êθ)

= −mr2σ · (− cosψθ̇êψ + sinψθ̇êr) + 2mrṙσ · êθ −mr2σ · θ̇(sinψêr + cosψêψ)
= −2mr2 sinψθ̇σ · êr + 2mrṙσ · êθ
= 2mrσ · (ṙêθ − r sinψθ̇êr)
= −2mrσ · (êψ × v)
= 2rêψ · (σ × p)

Qθ = −∂U
∂θ

+
d

dt

∂U

∂θ̇

= −mr2σ · ∂
∂θ

(ψ̇êθ − θ̇ sinψêψ) +
d

dt
(−mr2 sinψσ · êψ)

= −mr2σ · (ψ̇(− sinψêr − cosψêψ)− θ̇ sinψ(cosψêθ))

5



−m(2rṙ sinψσ · êψ + r2ψ̇ cosψσ · êψ + r2 sinψσ · (−ψ̇êr + θ̇ cosψêθ))
= 2mr2ψ̇ sinψσ · êr − 2mrṙ sinψσ · êψ
= 2mr sinψσ · (rψ̇êr − ṙêψ)
= −2mr sinψσ · (êθ × v)
= 2r sinψêθ · (σ × p)

Now, we will prove that the force vector F = Fxî + Fy ĵ + Fzk̂ and the generalized
forces Qr, Qψ, Qθ as obtained above, are related by the expression (1.49), using the
expression we derived earlier for the force vector:

Qi = F · ∂er
∂qi

=
(
−dV (r)

dr
r̂ + 2(σ × p)

)
· ∂
∂qi

(rêr)

Qr =
(
−dV (r)

dr
êr + 2(σ × p)

)
· ∂
∂r

(rêr)

=
(
−dV (r)

dr
r̂ + 2(σ × p)

)
· êr

= −dV (r)
dr

+ 2êr · (σ × p)

Qψ =
(
−dV (r)

dr
êr + 2(σ × p)

)
· ∂
∂ψ

(rêr)

=
(
−dV (r)

dr
r̂ + 2(σ × p)

)
· (rêψ)

= 2rêψ · (σ × p)

Qθ =
(
−dV (r)

dr
êr + 2(σ × p)

)
· ∂
∂θ

(rêr)

=
(
−dV (r)

dr
r̂ + 2(σ × p)

)
· (r sinψêθ)

= 2r sinψêθ · (σ × p)

Part(c) of this problem was not included in the homework set, but it maybe the most
interesting one: the equations of motion of the system are, using spherical polar
coordinates:
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L = T − U =
1
2
m(ṙ2 + r2ψ̇2 + r2 sin2 ψθ̇2)− V (r)−mr2σ · (ψ̇êθ − sinψθ̇êψ)

0 =
d

dt

∂L

∂q̇j
− ∂L

∂qj

=
d

dt

∂T

∂q̇j
− ∂T

∂qj
− d

dt

∂U

∂q̇j
+
∂U

∂qj

Qj =
d

dt

∂T

∂q̇j
− ∂T

∂qj

We can use the expressions we obtained earlier for the generalized forces. We need
to express the equations in terms of the cartesian components of the vector σ, since
those are constants (the spherical components are not constants, since the spherical
unit vectors themselves are not constant). Since the vector σ is constant, we can
choose the z-axis along the σ vector without any loss of generality. Then

êj · (σ × p) = mσ · (v × êj)
= mσ · (ṙêr + rψ̇êψ + r sinψθ̇êθ)× êj

êr · (σ × p) = mσ · (−rψ̇êθ + r sinψθ̇êψ)
= −mσrθ̇ sin2 ψ

êψ · (σ × p) = mσ · (ṙêθ − r sinψθ̇êr)
= −mσrθ̇ sinψ cosψ

êθ · (σ × p) = mσ · (−ṙêψ + rψ̇êr)
= mσ(−ṙ sinψ + rψ̇ cosψ)

Qr =
d

dt

∂T

∂ṙ
− ∂T

∂r

−dV (r)
dr

+ 2êr · (σ × p) = mr̈ −mr(ψ̇2 + sin2 ψθ̇2)

−dV (r)
dr

− 2mσrθ̇ sin2 ψ = mr̈ −mr(ψ̇2 + sin2 ψθ̇2)

mrψ̇2 +mr sin2 ψθ̇(θ̇ − 2σ) = mr̈ +
dV (r)
dr

Qψ =
d

dt

∂T

∂ψ̇
− ∂T

∂ψ
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2rêψ · (σ × p) = (2mrṙψ̇ +mr2ψ̈)−mr2 sinψ cosψθ̇2

−2mσr2θ̇ sinψ cosψ = 2mrṙψ̇ +mr2ψ̈ −mr2 sinψ cosψθ̇2

rθ̇ sinψ cosψ(θ̇ − 2σ) = 2ṙψ + rψ̈

Qθ =
d

dt

∂T

∂θ̇
− ∂T

∂θ

2rêθ · (σ × p) = 2mrṙ sin2 ψθ̇ + 2mr2 sinψ cosψθ̇ +mr2 sin2 ψθ̈

mσ(−ṙ sinψ + rψ̇ cosψ) = mr sinψ(2ṙθ̇ sinψ + 2rθ̇ cosψ + rθ̈ sinψ)

3. Problem 1-19: Spherical pendulum

A spherical pendulum is a mass point m suspended by a rigid weightless rod of length
l. We set up a coordinate system with the origin at the attachment point, and the
z-axis pointing down, along the gravitational force. In spherical polar coordinates,
the position vector of the mass is

r = lêr,

its velocity is
v = lψ̇êψ + l sinψθ̇êθ,

its kinetic energy is

T =
1
2
mv2 =

1
2
ml2(ψ̇2 + sin2 ψθ̇2),

and the potential energy is

V = −mg · r = −mgl cosψ.

The Lagrangian is

L = T − V =
1
2
ml2(ψ̇2 + sin2 ψθ̇2) +mgl cosψ

There are two generalized coordinates, ψ and θ. Lagrange’s equations of motion are

d

dt

∂L

∂θ̇
− ∂L

∂θ
= ml2

d

dt
(θ̇ sin2 ψ) = 0

d

dt

∂L

∂ψ̇
− ∂L

∂ψ
= ml2ψ̈ −ml2θ̇ sinψ +mgl sinψ = 0

The first equation is another way of saying the z-component of the angular momentum
is constant.
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4. Problem 21: A table with a hole

A mass m1 on a table is connected to another mass m2 by a string of length l passing
through a hole, with m2 moving a vertical direction.

We set up a coordinate system with the origin at the center of the hole, the x-y plane
on the table and the z-axis pointing down. We use cylindrical coordinates r, θ, z. The
constraints are easily solved, with mass m1 moving in the plane z = 0 and mass m2

moving in the z-axis:

r1 = r cos θî + r cos θĵ
r2 = zk̂

The length of the string is L = r + z, so the constraint is L = r + z, or ṙ = −ż. We
can choose r, θ as generalized coordinates for the system.

The kinetic energy is

T =
1
2
m1v

2
1 +

1
2
m2v

2
2 =

1
2
m1(ṙ2 + r2θ̇2) +

1
2
m2ż

2 =
1
2
(m1 +m2)ṙ2 +

1
2
m1r

2θ̇2

The gravitational potential energy, using g = gk̂, is

V = −m1g · r1 −m2g · r2 = −m2gz = −m2g(L− r)

The Lagrangian is

L = T − V =
1
2
(m1 +m2)ṙ2 +

1
2
m1r

2θ̇2 −m2gr

where we have omitted the constant term m2gL, since we know it doesn’t change the
equations of motion.

Lagrange’s equation for θ is:

0 =
d

dt

∂L

∂θ̇
− ∂L

∂θ

0 =
d

dt
(m1r

2θ̇)

Since θ is a cyclical coordinate, we see that there is a conserved quantity, l = m1r
2θ̇.

This is the angular momentum of the mass m1 on the table, which only has a vertical
component:

r1 = r(cos θî + cos θĵ)
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v1 = ṙ(cos θî + sin θĵ) + rθ̇(− sin θî + cos θĵ)

L1 = r1 ×m1v1 = m1r
2θ̇k̂ = lk̂

Lagrange’s equation for the coordinate r is:

0 =
d

dt

∂L

∂ṙ
− ∂L

∂r

0 = (m1 +m2)r̈ −m1rθ̇
2 +m2g (1)

0 = (m1 +m2)r̈ −m1r

(
l

m1r2

)2

+m2g

0 − = (m1 +m2)r̈ −
l2

m1r3
+m2g

0 = = (m1 +m2)r̈ṙ −
l2

m1r3
ṙ +m2gṙ (2)

0 =
d

dt

(
1
2
(m1 +m2)ṙ2 +

l2

2m1r2
+m2gr

)
0 =

d

dt

(
1
2
(m1 +m2)ṙ2 +

1
2
m1r

2θ̇2 +m2gr

)
0 =

d

dt
(T + V )

0 =
dE

dt

By transforming the equation into a total derivative in numbered line (2), we recog-
nize in this equation the conservation of mechanical energy. In numbered line (1), we
also recognize the term m2g representing the magnitude of the total external force in
the system, equal to the rate of change in kinetic energy, dT/dt = (m1+m2)r̈−m1rθ̇

2.
Notice that in polar coordinates, the rate of change in kinetic energy does not just
have second time derivatives (m1 + m2)r̈, but also an “angular momentum” term
−m1rθ̇

2.

If we wanted to use Newton’s laws F = ma, we need to introduce the tension force,
and then combine equations to eliminate it:

m2g − T k̂ = m2r̈2

−T êr = m1r̈1

We need the components of m1’s acceleration in polar coordinates:

r1 = = r cos θ i+ r cos θ j = rêr
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ṙ1 = ṙer + rθ̇eθ
r̈1 = r̈er + 2ṙθ̇eθ + rθ̈eθ − rθ̇2er

Newton’s equations are then:

m2g − T = m2z̈ = −m2r̈

−T = m1(r̈ − rθ̇2)

0 = 2ṙθ̇ + rθ̈ =
1
rθ̇

d

dt
(mr2θ̇2)

We can combine the first two equations and obtain Lagrange’ equation for r; the
third equation is Lagrange’s equation for θ. Newton’s laws give us a way to calculate
the tension if we know r(t): T = m2(g+ r̈); we don’t get the tension from Lagrange’s
equations unless we use Lagrange’s multipliers.

5. Free fall with frictional forces

A particle falls vertically under the influence of gravity, with fricitonal forces derivable
from a dissipation function F = 1

2kv
2.

The Lagrangian is (choosing the z-axis pointing down)

L = T − V =
1
2
mż2 +mgz

Lagrange’s equation is

0 =
d

dt

∂L

∂ż
− ∂L

∂z
+
∂F
∂ż

= mz̈ −mg + kż

We can write this as a differential equation for v = ż:

mv̇ + kv −mg = 0

We take another derivative and get an equation for a = v̇:

v̈ + kv̇ = mȧ+ ka = 0

which has an exponential solution

a(t) = a0e
−λt,

with λ = k/m. We integrate once to get the velocity:

v(t) = v0 +
a0

λ
(1− e−λt)
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As t→∞, the velocity approaches a constant, v → v0+a0/λ, but this final maximum
velocity seems to depend on arbitrary constants of integration: we know this is not
so! If we integrate v(t), we would obtain an expression for z(t) with three constants
of integration z0, v0, a0, but we know we should only have two, since we started with
a second order differential equation for x. However, the equation for v tells us that
v0, a0 are not independent:

0 = mv̇ + kv −mg

mg = ma0e
−λt + k

(
v0 +

a0

λ
(1− e−λt)

)
mg = kv0 +ma0

a0 = g − λv0

and then the velocity is

v(t) = v0 +
g − λv0

λ
(1− e−λt) = v0e

−λt +
mg

k
(1− e−λt)

and the final (maximum) terminal velocity is mg/k. At that point, gravity force mg
is in equilibrium with the friction force −dF/dż = −kż.

6. A pendulum hanging from a spring

A spring of rest length La (no tension) is connected to a support at one end and has
a mass M attached to the other. Assuming the motion is confined to a vertical plane,
the position of the mass M is, using polar coordinates r, θ with the x-axis pointing
down:

r = rêr = r(cos θ, sin θ)

Notice that the length of the spring is not constrained like in a rigid pendulum, we
do have two independent generalized coordinates in this case. The kinetic energy is

T =
1
2
mv2 =

1
2
(ṙ2 + r2θ̇2)

The potential energy is

V = −mg · r +
1
2
k(r − La)2 = −mgr cos θ +

1
2
k(r − La)2

and the Lagrangian is

L = T − V =
1
2
m(ṙ2 + r2θ̇2) +mgr cos θ − 1

2
k(r − La)2

In equilibrium, the spring will be stretched to provide a force compensating for gravity
on the mass: L0 = La + ∆L = La +mg/k. We can choose a generalized coordinate
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ξ, instead of r, representing the length the spring has stretched from its equilibrium
length L0: ξ = r − L0. The Lagrangian is then

L =
1
2
m(ξ̇2 + (ξ + L0)2θ̇2) +mg(ξ + L0) cos θ − 1

2
k(ξ +mg/k)2

Lagrange’s equation for ξ is :

d

dt

∂L

∂ξ̇
=

∂L

∂ξ

mξ̈ = m(ξ + L0)θ̇2 +mg cos θ − k(ξ +mg/k)
mξ̈ = m(ξ + L0)θ̇2 −mg(1− cos θ)− kξ

and Lagrange’s equation for θ is:

d

dt

∂L

∂θ̇
=

∂L

∂θ

m(ξ + L0)2θ̈ + 2ξ̇θ̇(ξ + L0) = −mgL0 sin θ

If we assume small departures from equilibrium: ξ � L0 and θ � 1, we can keep
leading oder terms in the equations, and obtain:

mξ̈ = −kξ
mL2

0θ̈ = −mgL0θ

which have oscillatory solutions with frequencies ω2
k = k/m for the spring stretching

and ω2
g = g/L0 for the angular displacement.
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