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1. Derivation 1-1: Kinetic energy and power

T =
1
2
mv2 =

1
2

p2

m
=

p · p
2m

mT =
1
2
p · p

d(mT )
dt

=
dp
dt
· p = F · p

If mass is constant,

d(mT )
dt

= m
dT

dt
= F · p

dT

dt
= F · p

m
= F · v

Notice that F · v = F · (ds)/dt = d(F · s)/dt = dW/dt is the power (work per unit
time).

2. Derivation 1-4: Non-holonomic constraints

If a constraint is written in the differential form
n∑

i=1

gi(x1, ...xn)dxi = 0

can be integrated, it means it is also the exact differential of a function f(x1, ...xn),
which is constant and represents an algebraic relationship between the coordinates:

n∑
i=1

gi(x1, ...xn)dxi = df = 0.

If this function exists, the constraint equation tells us about partial derivatives of the
function f :

∂f

∂xi
= gi
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and since
∂

∂xj

∂f

∂xi
=

∂

∂xi

∂f

∂xj
,

the functions gi must satisfy the condition

∂gi

∂xj
=

∂gj

∂xi

For a rolling disk on a plane, one of the constraints is

dx− a sin θ dφ = 0

so gx = 1, gφ = −a sin θ, gθ = 0. We see that

∂gφ

∂θ
= −a cos θ but

∂gθ

∂φ
= 0

and then, we see that the constraint cannot be equal to an exact differential, and
cannot be integrated: it is non-holonomic, unless θ = π/2. If θ = π/2, the disk is
rolling along the x-direction, and the constraint can be integrated:

dx− a dφ = 0 → x = a(φ− φ0)

This is a common problem in introductory physics, for objects rolling down an in-
clined plane.

The other constraint for the disk rolling on a plane is

dy + a cos θ dφ = 0

so gy = 1, gφ = a cos θ, gθ = 0. We see again that

∂gφ

∂θ
= −a sin θ but

∂gθ

∂φ
= 0

Again, the constraint is non-holonomic unless θ = 0 (the disk is rolling along the
y-direction).

Counting degrees of freedom

A rigid body such as a disk has 6 degrees of freedom, or coordinates needed for the
unique description of its position and orientation: for example, three coordinates
of any point, and three angles defining the body’s orientation in space; or three
coordinates for two different points.
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A disk can be described by the coordinates of the center of the disk r = (x, y, z); two
components defining a unit vector n̂ along the axis of the disk, and a rotation angle
φ of the disk about its axis. If the disk is constrained to be rolling on a plane, it has
four constraints:

(i) moving on a plane: z = constant;

(ii) being oriented perpendicular to the plane: n̂z = 0 (and thus z=a/2);

(iii) staying perpendicular to the plane: n̂ · v = 0

(iv) and rolling without slippling: |v| = aφ̇.

Condition (ii) which can be used to define a coordinate θ: n̂ = (cos θ, sin θ, 0): con-
straints (i) and (ii) have been used to reduce the number of coordinates from six to
four: x, y, θ, φ.

Condition (iii) can be expressed as a condition on the velocity v = v(sin θ,− cos θ);
and condition (iv) is then the constraints as in (1.39) in the textbook

ẋ− a sin θφ̇ = 0

ẏ + a cos θφ̇ = 0

There are four coordinates x, y, θ, φ, and two constraints, so there are only two degrees
of freedom, but we cannot find two independent generalized coordinates associated
with them because the constraints are non-holonomic.

There are six Newton’s equations of motion for a rigid body (F = Ṗ and N =
L̇). However, since the motion of the center of mass is on a plane, and the axis of
rotation is horizontal, there are only four (not six) non-trivial equations. We also
have two constraint equations, for a total of 6 differential equations to solve, and
four coordinates, x, y, θ, φ. We then see that there are two forces of constraint, also
unknown (the components of the friction force, a horizontal vector), so we have six
equations for six unknowns.

If the disk is rolling in a straight line, there is another constraint:

(v) the direction of the velocity is constant.

From the previous expression v = v(sin θ,− cos θ), this means that the angle θ is
constant, θ = θ0. The constraint equations are then holonomic and can be integrated:

x = a sin θ0(φ− φ0) and y = −a cos θ0(φ− φ0).

We have then used five constraints to reduce the six disk coordinates to a single
generalized coordinate φ: the system has only ne degree of freedom. Newton’s equa-
tions now only have two non-trivial equations (for the single components of the linear
and angular momentum): these are two equations for the coordinate φ and for the
constraint force (friction, which now also has a single component).
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3. Problem 1-5: Two wheels of radius a are mounted on on the ends of an
axle of length b such that the wheels rotate independently. The whole
combination rolls without slipping on a plane.

Consider first a single wheel (a disk) as in the previous problem. We have seen we can
describe the system using four coordinates x, y, θ, φ, constrained by two differential
equations:

ẋ = aφ̇ sin θ

ẏ = −aφ̇ cos θ

We can also write the constraint using dx, dy:

dx− a sin θdφ = 0
dy + a cos θdφ = 0

In a problem with two wheels, each wheel satisfies the same constraints than the
single rolling disk. We use r1,v1 for the center of wheel 1 and r2,v2 for the second
wheel. Since the wheels are connected by a common axle, the angles θ1, θ2 that define
each wheel’s axis are the same: θ1 = θ2 = θ, the angle of the common axle. The
rotation angles φ1, φ2 are different, since the wheels can rotate independently. Thus,
we can write the constraints as:

dx1 − a sin θdφ1 = 0
dy1 + a cos θdφ1 = 0

dx2 − a sin θdφ2 = 0
dy2 + a cos θdφ2 = 0

The center of the axle (which is the center of mass) has a position vector r = (r2 +
r1)/2, so x = (x1 + x2)/2 and y = (y1 + y2)/2. Thus, we can write constraints for
dx, dy :

dx− a sin θ(dφ1 + dφ2)/2 = 0
dy + a cos θ(dφ1 + dφ2)/2 = 0

Multiplying each equation by trigonometric factors sin θ, cos θ and adding or sub-
tracting them, we can write the equations as

cos θdx + sin θdy = 0

sin θdx− cos θdy =
a

2
(dφ1 + dφ2)
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So far, these have been the equations for the disks not rolling, but we also have the
constraint that the center of the wheels are at a constant distance b. The constraint
can be written as r2 − r1 = b(cos θî + sin θĵ), or x2 − x1 = b cos θ, y2 − y1 = b sin θ.
Taking derivatives, the x- constraint is

ẋ2 − ẋ1 = −bθ̇ sin θ

a sin θ(φ̇2 − φ̇1) = −bθ̇ sin θ

θ̇ = −a

b
(φ̇2 − φ̇1)

θ = C − a

b
(φ2 − φ1)

(If we follow on with the y-constraint, we get the same equation: the constraint is only
on the magnitude of the distance, not on direction; the constraint on direction was
used to define the angle θ for the axle’s direction, perpendicular to the wheels). Notice
that the constraint was holonomic to begin with (|r2 − r1| = b), we transformed into
one on velocities in order to involve θ, φ, but we then were able to integrate those
equations to get a holonomic constraint on θ, φ. This is to say, we can have constraints
involving velocities that are holonomic, if they are integrable.

4. Problem 1-13: Rocket motion.

The equation of motion is F = dp/dt. Consider the rocket with fuel at time t moving
at some vertical velocity v with respect to the Earth: the momentum is mv. An
instant later t + dt, there are two parts to the system: the rocket, with smaller mass
m − dm, moving at an increased velocity v + dv; and the expelled fuel with mass
dm, moving at a velocity vf with respect to the Earth. The total momentum is now
p + dp = (m− dm)(v + dv) + dmvf = mv + mdv + dm(vf − v) = p + mdv + v′dm, so
dp = mdv + v′dm. From F = dp/dt = −mg, we have −mg = mdv/dt + v′dm/dt, or

m
dv

dt
= −mg − v′

dm

dt
.

If dm/dt = ṁ and v′ are constant, then we can write

dv = −gdt− v′

m
dm = − g

ṁ
dm− v′

m
dm,

and we can integrate the equation:

v(m) = − g

ṁ
m− v′ ln(m) + C.

If the initial mass is m0, and the initial velocity is zero, then we can solve for the
constant C: 0 = (g/ṁ)m0 + v′ln(m0) + C, and

v(m) = − g

ṁ
(m−m0)− v′ ln

m

m0
.
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Notice that m decreases with time, so ṁ is a negative constant, and the first term
is negative (it is of course the usual gravity term for free fall). The second term is
positive because m/m0 < 1, and it is the one that makes the velocity increase with
time, at least in the beginning. If we want the velocity as a function of time, we use
m(t) = m0 + ṁt:

v(t) = −gt− v′ ln
(

1 +
ṁt

m0

)
.

For late times, the second term is much larger than the first, and we have v ≈
−v′ lnm/m0, or m/m0 ≈ e−v/v′

.

The figure below shows the velocity as a function of the ratio of initial mass to mass,
for v’=2.1km/s, ṁ = −m0/60s, and g = 9.8m/s2. As it can be seen, it reaches
Earth’s escape velocity 11.2 km/s when the final mass is about 1/300 of the initial
mass. Since the final mass is at least the mass of the rocket (plus any fuel left), the
fuel mass at launch was about 300 times the empty rocket mass.

5. Problem 1-14: Two points of mass m are joined by a rigid weightless rod
of length l, the center of which is constrained to move on a circle of radius
a. Express the kinetic energy in terms of generalized coordinates.

A system of two particles has 6 coordinates; there is one constraint due to the rod
between them, and two constraints for the center of the rod moving in a circle, so we
should be able to find three generalized coordinates.

Take the circle where the end of the rod is constrained to move on as a circle centered
on the origin, in the horizontal plane. The position of the center of the rod- also the
center of mass- is determined by a single angle Φ: R = a(cos Φî + sinΦĵ).
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We can choose as the other two generalized coordinates two angles θ and φ defining
the rod’s orientation (and thus the particles’ positions). We choose angles in a spher-
ical coordinate system with the origin in the center of mass (a non-inertial frame!).
If particle 1 has angular coordinates θ = θ1, φ = φ1, then particle 2 has angular
coordinates θ2 = π− θ, and φ2 = φ + π. Both particles are at a radial coordinate l/2
from the center of mass. The particles’ positions with respect to the center of mass
are:

r′1 = (l/2)(sin θ cos φî + sin θ sinφĵ + cos θk̂)

r′2 = (l/2)(− sin θ cos φî− sin θ sinφĵ − cos θk̂)

The kinetic energy of each particle is Ti = 1
2mv2

i . The velocity of each particle is

vi =
d

dt

(
R + r′i

)
= V + v′

i

= aΦ̇(sin Φî + cos Φĵ) +
l

2
θ̇(± cos θ cos φî± cos θ sinφĵ ∓ sin θk̂)

+
l

2
φ̇ sin θ(∓ sinφî± cos φĵ)

The square of the speed of each particle is

v2
i = V 2 + 2V · v′

i + v′2i

= (aΦ̇)2 ± alΦ̇ sinΦ(θ̇ cos θ cos φ− φ̇ sin θ sinφ)
±alΦ̇ cos Φ(θ̇ cos θ sinφ + φ̇ sin θ cos φ) + (lθ̇/2)2 + (lφ̇ sin θ/2)2

The total kinetic energy is then

T =
1
2
mv2

1 +
1
2
mv2

2 = ma2Φ̇2 +
1
4
ml2(θ̇2 + sin2 θφ̇2)

where we recognize the terms in formula 1.31 in the textbook:

T =
1
2
MV 2 +

∑ 1
2
miv

′2
i

We also saw explicitly the identity used in the derivation of Formula 1.31,
∑

v′i = 0,
since the velocity components of each particle have different signs, and cancel out in
the sum.

The kinetic energy of the center of mass is

1
2
MV 2 =

1
2
(2m)(aΦ̇)2 = ma2Φ̇2.

7



and the kinetic energy of motion about the center of mass is∑ 1
2
miv

′2
i = 2× 1

2
m(l/2)2(θ̇2 + sin2 θφ̇2)

=
1
4
ml2(θ̇2 + sin2 θφ̇2)

where we have used the formula for speed in spherical coordinates (see, for example,
appendix F.3 in Marion and Thorne):

v′2i = ṙ′2 + r′2θ̇2 + r′2 sin2 θφ̇2 = (l/2)2(θ̇2 + sin2 θφ̇2)

(it’s the same speed for both particles).
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