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Please write as much as you can when answering questions and problems, explaining your steps
in as many words as you can. When drawings are asked for, please annotate them if it makes them
more clear.

You can use more pages if needed. Please write in the form in this page how many extra pages
you returned for grading.
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(10 pts) Question: a mass on a rotating hoop.

Consider a bead of mass m constrained to move along a vertical hoop of radius R. The hoop is
rotating along a vertical axis through the center of the hoop, with constant angular velocity ω.

1. (1pt) If the particle were unconstrained and free to move in a gravitational field,
how many generalized coordinates would the system have?

A point particle in 3 dimensions has three degrees of freedom, so we would need three gener-
alized coordinates, such as the cartesian coordinates x, y, z or spherical coordinates r, θ, φ.

2. (2pts) How many constraints are there in the system? How many generalized
coordinates are there in the constrained system?

The particle in the system is constrained to be at a distance from the origin, and to rotate
about the z-axis with uniform velocity: those are two constraints. The mass has only one
degree of freedom left, so it is described by just one generalized coordinate, such as the
azimuth angle θ.

3. (3 pts) What are the forces acting on the mass? Which of the forces acting on the
mass can be derived from a potential, and which are constraint forces?

The forces on the mass are gravity, and the contact force exerted by the hoop on the mass.
The gravitational force can be derived from a potential Vg = −mg · r. The force of the hoop
on the mass cannot be derived from a potential (except in special cases), and is a constraint
force.

4. (4 pts) How would you find the constraint forces using a Lagrangian formulation?

We would write the Lagrangian using all three coordinates r, θ, φ, and use two Lagrange
multipliers λr, λφ for the constraints r−R = 0 and φ−ωt−φ0 = 0, respectively. There would
be a total of five equations (three Lagrange equations, plus two constraint equations) for five
variables. The Lagrange multipliers would be associated with the components of the hoop’s
force on the mass in the radial direction, and in the horizontal direction perpendicular to the
position vector, respectively (i.e., along êr and êφ).
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(25 pts) Problem : a mass on a rotating hoop.

Consider a bead of mass m constrained to move along a vertical hoop of radius R. The hoop is
rotating along a vertical axis through the center of the hoop, with constant angular velocity ω.
(You can refer to the drawing of the question in the previous page).

1. (5 pts) Write down the Lagrangian of the system to describe the position of the
mass on the hoop in terms of independent generalized coordinates.

The kinetic energy of the mass in spherical coordinates is

T =
1
2
mv2 =

1
2
m

(
ṙ2 + r2 sin2 θφ̇2 + r2θ̇2

)
=

1
2
mR2(ω2 sin2 θ + θ̇2)

The potential energy is
V = −mg · r = mgz = mgR cos θ

and the Lagrangian is then

L = T − V =
1
2
mR2(ω2 sin2 θ + θ̇2)−mgR cos θ

2. (8 pts) Write down the Hamiltonian of the system.

The momentum canonically conjugate to θ is pθ = ∂L/∂θ̇ = mR2θ̇, so θ̇ = pt/mR2. . The
Hamiltonian is

H = ptθ̇ − L =
p2

t

2m
− 1

2
mR2ω2 sin2 θ + mgR cos θ

3. (5 pts) Is the Hamiltonian equal to the energy? Discuss conservation properties
of the Hamiltonian and the energy.

The Lagrangian does not depend explicitly on time, so the Hamiltonian is a constant of
motion. However, the energy of the particle is

E = T + V =
1
2
mR2ω2 sin2 θ +

1
2
mθ̇2 + mgR cos θ = H + mR2ω2 sin2 θ

is not equal to the Hamiltonian, and is not a constant of motion, unless θ(t) is constant.

4. (7 pts) Write the canonical equations of motion for the mass. Is there any equi-
librium position?

The canonical equations of motion are

θ̇ =
∂H

∂pθ
=

pθ

m

and
ṗθ = −∂H

∂θ
= mR2ω2 sin θ cos θ + mgR sin θ = −m sin θ(g + Rω2 cos θ)

The equilibrium conditions are ṗθ = 0, θ̇ = 0. From the canonical equation for θ̇, we see
that θ̇ = 0 if pθ = 0. From the canonical equation for ṗθ, we see that there are equilibrium
positions when sin θ = 0, or when cos θ = −g/ω2. The equilibrium position at θ = 0 (top of
the hoop) is unstable; the equilibrium position at θ = π (bottom of the hoop) is stable. The
third equilibrium position exists only if Rω2 > g, and is in the lower half of the hoop.
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(25 pts) Problem: A central force

Consider a mass m free to move in 3-dimension, subject to an isotropic spring potential of the form
V (r) = 1

2kr2.

1. (8pts) Plot the effective potential for the radial motion of the particle, when the
particle has angular momentum of magnitude l.
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r

l2/2mr2

Emin

r0
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E

Figure 1: The effective potential is Veff = 1
2kr2 + 1

2
l2

mr2

2. (8 pts) Can the particle have an unbound orbit? Are the bound orbits closed or-
bits? How may turning points do the orbits have? Briefly explain your answers.

All orbits are bound, because the effective potential grows with distance: the particle cannot
be at an infinite radial distance. If the angular momentum (a constant of motion) is not zero,
the orbit has two turning points for a minimum and maximum radial distance.

If the angular momentum is zero, orbits are still bound but don’t have a minimum radial
distance, they only have one turning point at a maximum radial distance. In this case, the
“orbit” is a one-dimensional linear motion of the particle subject to a spring restoring force,
between maximum displacement points on either side of the the origin.

If l 6= 0, the orbit is bound and closed (this is one of the few potentials that have closed
orbits), but not elliptical. The orbit will precess and come back to the initial point in a finite
time.

3. (9 pts) What is the energy the particle must have if its orbit is circular? How
much of that energy is kinetic energy and how much potential energy?

The orbit will be circular when the energy is equal to the minimum of the effective potential.
The effective potential has a minimum when its derivative vanishes, which is the equation for
the radius of the circular orbit:

V ′
eff = kr − l2

mr3
= 0 ⇒ r4

0 =
l2

km

The energy of the orbit is the value of the effective potential evaluated at r = r0. The
kinetic energy is 1

2mṙ2
0 + l2/2mr2

0 = l2/2m(l/
√

km) = l
√

k/m/2. The potential energy is
V = 1

2kr2
0 = 1

2kl/
√

km = l
√

k/m/2. The total energy is thus half kinetic and half potential.
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(15 pts) Question: Masses and springs

Four identical masses are at the corner of a square, attached by identical springs along the sides of
the square, with equal spring constant k.

1. (2 pts) Assuming the system can move in all three dimensions, how many normal
modes there will be?

There are four point masses and no constraints, so the system has 12 degrees of freedom, and
will have 12 normal modes.

2. (5 pts) How many normal modes will have a null eigenfrequency? Describe the
motion of the system in each of those modes.

The null eigenfrequencies are associated with motion of the system that has no change in
potential energy, i.e., when the springs do not stretch or compress.

There are three“rigid body” modes: three translation modes, one for each direction x, y, z;
and three rotation modes, one about each of x, y, z axis.

There are also three other modes where the springs do not compress or stretch, and thus
have constant potential energy, but are not ”rigid body” modes: a mode where the square
transforms into a rhombus; and two modes in which one mass and its two adjacent square
sides rotate about the diagonal line (there are two such independent modes, one for each of
two masses on the same side).

3. (8 pts) Sketch the motion of the system in at least three different normal modes with non-zero
eigenfrequency.
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(25 pts) Problem: A car driving with an open door

A car begins moving on a horizontal road, with a door accidentally left open with an initial angle φ0

(where φ = 0 indicates the door is closed). The motion of the car is described by a function X(t).
The door has mass M , width W , height H, and negligible thickness. Assume this is a primitive
prototype of a car, where the hinges allow a full rotation of the door (!).

φ

x(t)

1. (7 pts) Write the Lagrangian of the door, considering it as a rotating rigid body.

The system (the door) rotates about a vertical axis on the side, which is one of the principal
axes of the body, although not through the center of mass. We will choose the other two
principal axes so that the door is along the x′ axis (i.e., with points in the door having y′ = 0,
in the x′z′ plane). The moment of inertia with respect to a vertical axis through the center
of mass is I0 = MW 2/12. The moment of inertia with respect to the axis of rotation is
I = I0 + M(W/2)2 = MW 2/3.

we choose an origin for the body system at the center of the door, on the axis of rotation.
Points in the door will have a position vector with respect to an inertial system r = Xî + r′,
where r′ is the position vector with respect to the origin of the body frame. The velocity of
mass elements in the door will be v = V + ω × r′, where V = Ẋî and ω = φ̇k̂. The kinetic
energy of the door will be

T =
1
2

∫
dmv2 =

1
2

∫
dm(V 2 + 2ω · (V × r′) + |ω × r′|2)

=
1
2
MẊ2 + Mω · (V ×R′

cm) +
1
2
Iω2

=
1
2
MẊ2 +

1
2
MWẊφ̇ sin φ +

1
2
Iφ̇2

There is no potential energy (the gravitational potential energy is constant), so the Lagrangian
is simply

L = T =
1
2
MẊ2 +

1
2
MWẊφ̇ sinφ +

1
2
Iφ̇2

2. (6 pts) Find a differential equation for the angle of the door with the car, in terms
of the known X(t) of the car (assumed to be known).

Lagrange’s equation for the coordinate φ is

d

dt

∂L

∂φ̇
− ∂L

∂φ
=

d

dt
(
1
2
MẊ sinφ + Iφ̇)− 1

2
MẊφ̇ cos φ =

1
2
MẌ sinφ + Iφ̈ = 0

or

φ̈ = −1
2

M

I
Ẍ sinφ = − 3Ẍ

2W
sinφ

6



3. (6 pts) Describe (without an analytic solution) the door’s motion when the car
moves

(a) with uniform velocity: If Ẍ = 0, then φ̈ = 0. If the door starts open but at
rest, it will remain open with the car moving (this also follows from Galileo’s relativity
principle).

(b) with uniform positive acceleration: If Ẍ > 0 and sinφ0 > 0, the door will have
negative angular acceleration and will close itself (or keep rotating and move into the
car if possible). So, you can close the door by accelerating forward if you forgot it open
(not an advisable move, though).

(c) with uniform negative acceleration: If Ẍ < 0 and sinφ0 > 0, the door will have
positive angular acceleration: the door will open wider, and keep increasing the angle
until φ > π and the acceleration becomes negative. Of course, in a real car, the door
will slam into the front of the car when φ = π, if it can get that far.

4. (6 pts) Under what conditions can the door have small oscillations about an equilibrium
position? What would the frequency of those oscillations be?

For small φ and uniform positive acceleration Ẍ = A, the acceleration of the car acts like
a restoring force, since φ̈ ≈ −(3A/2W ) sinφ. The solutions will be oscillatory (if the door
can oscillate freely with positive and negative angle, into and out of the car), with frequency
ω2 = 3A/2W .
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