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(10 pts) Question 1: A two mass system.

Consider the following arrangements of two masses, shown in the figure: (a) two masses not con-
nected to each other; (b) two masses connected by rigid rods (a double pendulum); (c) two masses
connected by springs (a double pendulum with elastic strings). In all cases, there is a gravity force
in the z direction, and a uniform electric field in the x direction. Both masses have mass m and
positive electrical charge q.

1. (2 pts) How many constraints does each system have?

(a) There are no constraints.

(b) Two constraints: |r1| = l, |r2 − r1| = l.

(c) There are no constraints.

2. (2 pts) How many Hamilton equations are there for each system?

There are two Hamilton equations for each canonical coordinate (one for coordinate, one for
momentum). The number of canonical coordiantes is equal tot he number of generalized
coordinates, or number of degrees of freedom. The number of degrees of freedom is equal to
3 times the number N of particles (N=2 in all cases), minus the number of constraints.

(a) 3N = 6 degrees of freedom (i.e., x, y, z for each particle); 12 Hamilton equations.

(b) 3N-2= 4 degrees of freedom (i.e., two angles for each particle); 8 Hamilton equations.

(c) 3N = 6 degrees of freedom (i.e., x, y, z for each particle); 12 Hamilton equations.

3. (6 pts) Consider the following quantities: mechanical energy E, cartesian com-
ponents of total linear momentum Px, Py, Pz; and cartesian components of total
angular momentum Lx, Ly, Lz. Which of these quantities are conserved in each
case?

Energy is conserved in all three systems (no dissipative forces, no time dependent constraints)

In (a) there is a translational symmetry in the y-direction, so Py is conserved, but not Px, Pz.
In (b) and (c), there are no translational symmetries, so no components of P are conserved.

Because of the electric field, there aren’t any rotational symmetries in all cases, so no com-
ponent of L is conserved.
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(15 pts) Question 2: Changing the Lagrangian by a total derivative.

Consider the most general Lagrangian of a one-dimensional harmonic oscillator:

L =
1
2
mẋ2 − 1

2
kx2 +

dF (x, t)
dt

1. (5 pts) Give a non-constant example of F such that the canonical momentum
p = ∂L/∂ẋ is equal to the linear momentum Px = mẋ.

Expanding the time derivative in the Lagrangian, we have

L =
1
2
mẋ2 − 1

2
kx2 +

dF (x, t)
dt

=
1
2
mẋ2 − 1

2
kx2 +

∂F

∂x
ẋ +

∂F

∂t

so the canonical momentum is
p =

∂L

∂ẋ
= mẋ +

∂F

∂x

If p = mẋ, we need ∂F/∂x =. For example, F = F0 sinΩt (or any function of t).

2. (5 pts) Is there a non-constant choice for F such that the mechanical energy
E = 1

2mẋ2 − 1
2kx2 is not conserved? If yes, give an example; if not, explain why.

The mechanical energy is constant as a consequence of the equations of motion; the equations
of motion are independent of the choice of F (x, t). Thus, there is no choice of F that would
make the energy not conserved.

3. (5 pts) Give a non-constant example of F such that the Hamiltonian H is not equal
to the energy, but it is conserved.

The energy E = T + V is conserved. The Hamiltonian is equal to

H = pẋ− L =
1
2
mẋ2 +

1
2
kx2 − ∂

∂t
= E − ∂F

∂t

If ∂F/∂t is constant, then H 6= E but is still constant. For example, F = Ct + A. This is a
non constant F , but it only adds a constant to the Lagrangian.
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(25 pts) Problem 1. A constrained rotating system.

Consider a mass m attached with massless rods of length l to a fixed point at the origin, and to
a bead of mass m on the z-axis, as shown in the figure. The whole system is made to rotate with
constant angular velocity Ω about the vertical axis. The bead can move up or down on the axis.
The gravitational force is assumed uniform, pointing down in the z direction. The angle the top
rod makes with vertical axis is θ, which we choose as the single generalized coordinate needed for
the system.

1. (12 pts) Write Lagrange’s equation for θ.

The position of the masses are

r1 = l(sin θ cos Ωt, sin θ sinΩt, cos θ)

r2 = (0, 0, 2l cos θ)

The velocities are

v1 = lθ̇(cos θ cos Ωt, cos θ sinΩt,− sin θ) + lΩ(− sin θ sinΩt, sin θ cos Ωt, 0)

v2 = −2lθ̇(0, 0, sin θ)

The kinetic energy is

T =
1
2
mv2

1 +
1
2
mv2

2 =
1
2
ml2(θ̇2 + Ω2 sin2 θ) +

1
2
m(4l2 sin2 θ)θ̇2

The gravitational potential energy is

V = −mgz1 −mgz2 = −3mgl cos θ

The Lagrangian is then

L =
1
2
ml2(θ̇2 + Ω2 sin2 θ) + 2ml2θ̇2 sin2 θ + 3mgl cos θ

Lagrange’s equation is

0 =
d

dt

∂L

∂θ̇
− ∂L

∂θ

=
d

dt

(
ml2θ̇ + 4ml2θ̇ sin2 θ

)
−

(
ml2Ω2 sin θ cos θ + 4ml2θ̇2 sin θ cos θ − 3mgl sin θ

)
= ml2θ̈ + 4ml2θ̈ sin2 θ + 8ml2θ̇2 sin θ cos θ −

(
ml2Ω2 sin θ cos θ + 4ml2θ̇2 sin θ cos θ − 3mgl sin θ

)
= ml2θ̈(1 + sin2 θ) + 4ml2θ̇2 sin θ cos θ −ml2Ω2 sin θ cos θ + 3mgl sin θ
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2. (3 pts) How many equilibrium configurations are there? Describe the equilibrium
positions in the limits for slow and fast rotation (small and large Ω).

In equilibrium, θ̇ = θ̈ = 0, so Lagrange’s equation will be satisfied if

ml2θ̈(1+sin2 θ)+4ml2θ̇2 sin θ cos θ−ml2Ω2 sin θ cos θ+3mgl sin θ = ml sin θ(lΩ2 cos θ−3g) = 0

This is an equation for the equilibrium angle θ with three solutions:

θ = 0, π, cos−1(
√

3(g/l)/Ω2)

The first solution θ = 0 is a stable equilibrium with both masses on the positive z axis; the
second solution with θ = π is an unstable equilibrium with one mass at the origin and another
at the top (negative z axis); these solutions are independent of the rotation velocity Ω. These
solutions are only possible for point masses, of course.

The third solution is only possible if Ω2 ≥ 3g/l. For slow rotation, then there are only two
equilibrium positions; for fast rotation, there is a third equilibrium position that tends to
θ = π/2 (top mass on the horizontal axis) as Ω →∞.

3. (10 pts) Find the Hamiltonian for the system. Is it conserved? Is it equal to the
energy?

The canonical momentum is

pθ =
∂L

∂θ̇
= ml2(1 + 4 sin2 θ)θ̇

The Hamiltonian is

H = pθθ̇ − L =
1
2
ml2(1 + 4 sin2 θ)θ̇2 − 1

2
ml2Ω2 sin2 θ − 3mgl cos θ

=
p2

θ

2ml2(1 + 4 sin2 θ)
− 1

2
ml2Ω2 sin2 θ − 3mgl cos θ

The Hamiltonian is not equal to the energy, since the kinetic energy is not quadratic in θ̇.

The Hamiltonian is conserved, though, because the Lagrangian does not depend explicitly on
time.
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(25 pts) Problem 2: Two masses and three springs

Consider two masses m and three springs, all with identical spring constants k and equilibrium
length a. The masses can only move longitudinally.

1. (10 pts) What are the normal frequencies ωk and the normal modes ak of the
system? (If you can guess the right answer, you don’t need to derive it - but you
don’t get partial credit if it’s wrong...)

We set up the origin on the left wall, with the position of the two masses being x1 = a+η1, x2 =
2a + η2, where η1, η2 are deviations from equilibrium. The kinetic energy is

T =
1
2
mẋ2

1 +
1
2
mẋ2

2 =
1
2
mη̇2

1 +
1
2
mη̇2

2

so the kinetic energy matrix is proportional to the identity matrix: T = m1

The potential energy is

V =
1
2
k(x1 − a)2 +

1
2
k(x2 − x1 − a)2 +

1
2
k(3a− x2 − a)2 =

1
2
kη2

1 +
1
2
k(η2 − η1)2 +

1
2
kη2

2

so the potential energy matrix is

V = k

(
2 −1
−1 2

)
The secular equation for eigenfrequencies is

|V − ω2T| =
∣∣∣∣ 2k −mω2 −k

−k 2k −mω2

∣∣∣∣ = (2k −mω2)2 − k2

with solutions ω2
± = 3k/m, k/m

The normal mode vectors a± = (a±1, a±2) will satisfy (V − ω2
±T) · a± = 0. The matrices

(V − ω2
±T) are

V − ω2
±T =

(
2k −mω2

± −k
−k 2k −mω2

±

)
=

(
∓k −k
−k ∓k

)
so the (unnormalized) normal modes are a± = a±(1,∓1). Using the kinetic energy to nor-
malize modes, we have

a± =
1√
2m

(1,∓1)

The first mode, with the higher frequency ω2
+ = 3k/m, has the two masses moving iout of

phase, so the end springs are compressed when the middle spring is stretched. The second
mode with lower frequency ω2

− = k/m has the two masses moving in phase, with the middle
spring not stretching or compressing, and the two end springs compressing and stretching out
of phase with each other.
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2. (15 pts) If the system starts at rest, with the first mass at a distance a + ∆ from
the left wall, and the second mass at a distance 2a from the wall, what are the
displacements x1(t), x2(t) as a function of time for each mass, and xCM (t) for the
center of mass of the system?

The general solution for the masses’ motion is

x1(t) = a + η1(t) = a + C+ cos(ω+t + φ+) + C− cos(ω−t + φ−)

x2(t) = 2a + η2(t) = 2a− C+ cos(ω+t + φ+) + C− cos(ω−t + φ−)

The four constants C±, φ± are obtained from initial positions and velocities:

x1(0)− a = ∆ = C+ cos φ+ + C− cos φ− (1)
ẋ1(0) = 0 = −C+ω+ sinφ− − C−ω− sinφ− (2)

x2(0)− 2a = 0 = −C+ cos φ+ + C− cos φ− (3)
ẋ2(0) = 0 = C+ω+ sinφ− − C−ω− sinφ− (4)

From (2) and (4) we see that sinφ+ = sinφ− = 0, and thus cos φ+ = cos φ− = 1. Using this
in (3), we see that C+ = C− = C. Using this in 91), we see that C = ∆/2. The masses’
coordinates are then

x1(t) = a +
∆
2

(cos ω+t + cos ω−t)

x2(t) = 2a +
∆
2

(− cos ω+t + cos ω−t)

The center of mass is

xcom(t) =
1
2
(x1(t) + x2(t)) =

3
2
a + ∆ cos ω−t
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(25 pts) Problem 3: A free rigid body.

Consider the motion of a rigid body with principal moments of inertia I1 < I2 < I3, in absence
of external forces and torques (i.e., a free rigid body). Assume the body is a rectangular figure of
width W, height H and length L (i.e., a book), with H<W<L, as shown in the figure.

The angular velocity vector of the rigid body, in the body system, is ~ω = (ω1, ω2, ω3). The
conserved energy of the top is E, and the conserved angular momentum vector is L, which has
magnitude L and, in the body system, has components ~L = (L1, L2, L3) = (I1ω1, I2ω2, I3ω3).

1. (5 pts) Prove that for a given energy E, the value for the angular momentum has
minmum and maximum values 2EI1 < L2 < 2EI3. (Hint: write expressions for
2EI1, 2EI3 and L2 in terms of ω1, ω2, ω3.)

The magnitude squared of the angular momentum is

L2 = I2
1ω2

1 + I2
2ω2

2 + I2
3ω2

3

The energy is just kinetic energy, which is

E =
1
2
(I1ω

2
1 + I2ω

2
2 + I3ω

2
3)

From this, we see that the differences 2EI3 − L2 and 2EI3 − L2 have a definite sign:

2EI3 − L2 = I3(I1ω
2
1 + I2ω

2
2)− (I2

1ω2
1 + I2

2ω2
2) = I1(I3 − I1)ω2

1 + I2(I3 − I2)ω2
2 ≥ 0

2EI1 − L2 = I1(I2ω
2
2 + I3ω

2
3)− (I2

2ω2
2 + I2

3ω2
3) = −I2(I2 − I1)ω2

2 − I3(I3 − I1)ω2
3 ≤ 0

Thus, we see that 2EI1 ≤ L2 ≤ 2EI3. If the angular momentum has its minimum value
L =

√
2EI1, then ω2 = ω3 = 0, and the body rotates around its I1 axis with angular velocity

ω1.

If the angular momentum has its maximum value L =
√

2EI3, then ω1 = ω2 = 0, and the
body rotates around its I3 axis with angular velocity ω3.

2. (15 pts) Assume the angular momentum is only slightly larger than its minimum
value, and ω2, ω3 � ω1. Use Euler’s equations to prove that to leading order, ω1 is
constant. Obtain solutions for ω2(t), ω3(t) in this approximation.

If the angular momentum is only slightly larger than its minimum value, we can assume
ω2, ω3 � ω1. Euler’s equation for ω1 is to leading order in ω2/ω1, ω3/ω1:

0 = I1ω̇1 − ω2ω3(I2 − I3) ≈ I1ω̇1

so ω1 is approximately constant.
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Euler’s equations for ω2, ω3 are

ω̇2 =
(

ω1
I3 − I1

I2

)
ω3

ω̇3 = −
(

ω1
I2 − I1

I3

)
ω2

which can be combined in a single second order differential equation:

ω̈2 =
(

ω1
I3 − I1

I2

)
ω̇3 = −Ω2ω2

with Ω2 = ω2
1((I3 − I1)(I2 − I1)/(I2I3)). The solutions for ω2, ω3 are then

ω2(t) = ω0 cos(Ωt + φ)

ω3(t) =
I2

I3 − I1

ω̇2

ω1
= −ω0

√
I2(I2 − I1)
I3(I3 − I1)

sin(Ωt + φ)

The angular velocity vector ~ω is seen to rotate in the body frame around the I1 axis, with
angular velocity Ω. To be consistent with our assumptions, we need ω0 � ω1, so the angular
velocity vector makes a small (but not constant!) angle with the I1 axis. Notice that the end
point of the vector will describe an ellipse, not a circle like in the free symmetric top. The
ratio ω3/ω2 is smaller than unity, so the ω3 component is larger than the ω2 component.

3. (5 pts) Draw a snapshot of the angular velocity vector and the angular momentum
vector in the figure. Are these vectors constant in inertial space? Are these
vectors constant in the body frame?

The largest moment of inertia of the object in the figure is I3 = W 2 + L2, about an axis
perpendicular to the “book’s cover”; the smallest moment of inertia is I1 = H2 + W 2, about
an axis parallel to the books binding edge. The moment of inertia about an axis parallel to
the book’s width is the intermediate one I2 ∝ H2 + L2.

From the solutions we obtained, and being consistent with our assumptions, we need ω0 � ω1,
so the angular velocity vector makes a small (but not constant!) angle with the I1 axis. Notice
that the end point of the vector will describe an ellipse, not a circle like in the free symmetric
top.

The angular momentum vector is L = (I1ω1, I2ω2, I3ω3), so it will also have a constant
component along x3, and also precess around x1 with angular velocity Ω, but at a different,
larger angle, since the L1/L2,3 = (I1/I2,3)ω1/ω2,3 ratio is smaller than the ω1/ω2,3 ratio. The
ellipse described by the end point of the angular momentum vector does not have the same
axes ratio than the ellipse described by the angular momentum vector, it will even less round.

Both the angular momentum and the angular velocity vector precess about the x3 axis in the
body frame.

Since there are no torques, the angular momentum vector is conserved in inertial space, and
it will be fixed. The angular velocity vector, however, will not be constant: we can use Euler’s
angles to rotate the vector we calculated in the body frame to inertial space (but we won’t).
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