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1 Introduction

We will write down equations of motion for a single and a double plane pendulum, following
Newton’s equations, and using Lagrange’s equations.

Figure 1: A simple plane pendulum (left) and a double pendulum (right). Also shown are
free body diagrams for the forces on each mass.

2 Newton’s equations

The double pendulum consists of two masses m1 and m2, connected by rigid weightless
rods of length l1 and l2, subject to gravity forces, and constrained by the hinges in the rods
to move in a plane. We choose a coordinate system with the origin at the top suspension
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point, the x-axis as a horizontal axis in the plane of motion, and the y-axis pointing down
(so that gravity forces have positive components). The single plane pendulum, a simpler
case, has a single particle hanging from a rigid rod.

2.1 Constraints

The simple pendulum system has a single particle with position vector r = (x, y, z). There
are two constraints: it can oscillate in the (x,y) plane, and it is always at a fixed distance
from the suspension point. Mathematically,

z = 0 (1)
|r| = l. (2)

The double pendulum system has two particles (N=2) with position vectors r1, r2, each
with components (xi, yi, zi). There are four constraints: each particle moving in the x-y
plane, and each rod having constant lengths. These constraints can be expressed as

z1 = 0 (3)
z2 = 0 (4)
|r1| = l1 (5)

|r2 − r1| = l2 (6)

These constraints are holonomic: they are only algebraic relationships between the coor-
dinates, not involving inequalities or derivatives.

In the single pendulum case, we only have one particle (N=1), so we have 3N=3 coor-
dinates. Since we have two constraints (m=2), we are left with n=3N-m=3-2=1: only one
generalized coordinate. This is the angular position of the pendulum θ, which we can use
to write:

r = l(sin θ, cos θ, 0). (7)

In the double pendulum We know there should be only two generalized coordinates,
since there are 3N=6 coordinates, and m=4 constraints, so n=3N-m=6-4=2. We can find
expressions for r1, r2 in terms of two angles θ1, θ2:

r1 = l1(sin θ1, cos θ1, 0) (8)
r2 = r1 + l2(sin θ2, cos θ2, 0) (9)

We can express velocity an acceleration vectors in terms of generalized coordinates. For
the single pendulum,
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r = l(sin θ, cos θ) (10)
ṙ = v = lθ̇(cos θ,− sin θ) (11)
r̈ = a = lθ̈(cos θ,− sin θ)− lθ̇2(sin θ, cos θ) (12)

= lθ̈v̂ − lθ̇2r̂ (13)

The velocity vector v is perpendicular to the position vector r, which is the expression
of the constraint |r| = l = constant. We should recognize the tangential and centripetal
acceleration terms, proportional to the velocity and to the inverted radial directions, re-
spectively.

For the double pendulum, we derive the same expressions for the first particle

r1 = l1(sin θ1, cos θ1) (14)
ṙ1 = v1 = l1θ̇1(cos θ1,− sin θ1) (15)
r̈1 = a1 = l1θ̈1(cos θ1,− sin θ1)− l1θ̇

2
1(sin θ1, cos θ1) (16)

= l1θ̈1v̂1 − l1θ̇
2
1 r̂1 (17)

and the second particle:

r2 = r1 + l2(sin θ2, cos θ2) (18)
ṙ2 = v2 = v1 + l2θ̇2(cos θ2,− sin θ2) (19)
r̈2 = a2 = a1 + l2θ̈2(cos θ2,− sin θ2)− l2θ̇

2
2(sin θ2, cos θ2) (20)

2.2 Forces

In the single pendulum case, the forces on the particle are gravity and tension. Gravity
is along the y-direction, or the direciton of gravitational acceleration g, and the tension is
pointing towards the origin, along the direction of −r:

F = T
−r
|r|

+ mg = −T

l
r + mg (21)

In the double pendulum, the forces on m1 are the tension in the two rods, and gravity.
The tension in the upper rod is along the direction −r1, the tension force on m1 due to
the lower rod is along the direction r2 − r1, so we can write the force F1 as

F1 = T1
−r1

|r1|
+ T2

r2 − r1

|r2 − r1|
+ m1g = −T1

l1
r1 +

T2

l2
(r2 − r1) + m1g (22)

The forces on m2 are the tension in the lower rod, and gravity. The tension on m2 is
along the direction of −(r2 − r1):

F2 = T2
−(r2 − r1)
|r2 − r1|

+ m2g = −T2

l2
(r2 − r1) + m2g (23)
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2.3 Equations of motion

2.3.1 Single Pendulum

In the single pendulum case, Newton’s law is F = mr̈. Writing the two non-trivial compo-
nents, we have

mr̈ = F = −T

l
r + mg (24)

ml
(
θ̈(cos θ,− sin θ)− θ̇2(sin θ, cos θ)

)
= −T (sin θ, cos θ) + mg(0, 1). (25)

We thus have two equations:

ml
(
θ̈ cos θ − θ̇2 sin θ

)
= −T sin θ (26)

−ml
(
θ̈ sin θ + θ̇2 cos θ

)
= −T cos θ + mg (27)

Notice that although we only have one generalized coordinate (θ), we have two equa-
tions. That is because the equations also have the magnitude of the tension as an unknown,
so we have two equations for two unknowns, θ and T .

The equations are not only coupled, but are also non-linear, involving trigonometric
functions (ugh!). A common trick with expressions involving trig is to make use of trig
identities like cos2 θ + sin2 θ = 1. For example, multiplying 43 by cos θ, and adding Eq. 45
multiplied by − sin θ, we obtain a simpler equation for θ̈. Using these identities, we can
write the equations as

lθ̈ = −g sin θ (28)
mlθ̇2 = T (29)

We cannot solve Eq. 28 analytically, but we could either solve it numerically, or in the
small angle approximation. There will be two constants of integration, because it is a
second order differential equation: we can relate those constants to the initial position and
velocity, or to conserved quantities such as the total energy (but not linear momentum,
nor angular momentum: the forces and torques are not zero!). Whichever way, once we
have a solution for θ(t), we can use it in Eq.29 to solve for the other unknown, the tension
T . Eq.29 does not invovle derivatives of T , so there are no new constants of integration
for the problem.

2.3.2 Double Pendulum

In the double pendulum, Newton’s second law on each particle is Fi = mir̈i:

m1r̈1 = −T1

l1
r1 +

T2

l2
(r2 − r1) + m1g (30)

m2r̈2 = −T2

l2
(r2 − r1) + m2g (31)
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Are these six equations (each equation has three componsents) for two coordinates θ1, θ2?
Again, not quite: the equations only have two non-zero components in the x,y plane, and
we have four unknowns: θ1, θ2, T1 and T2, so we have four equations for four unknowns,
just as expected.

We write the equation of motion for the two particles, split into their two components
in the plane:

m1l1

(
θ̈1 cos θ1 − θ̇2

1 sin θ1

)
= −T1 sin θ1 + T2 sin θ2 (32)

−m1l1

(
θ̈1 sin θ1 + θ̇2

1 cos θ1

)
= −T1 cos θ1 + T2 cos θ2 + m1g (33)

m2

(
l1θ̈1 cos θ1 − l1θ̇

2
1 sin θ1 + l2θ̈2 cos θ1 − l2θ̇

2
2 sin θ2

)
= −T2 sin θ2 (34)

−m2

(
l1θ̈1 sin θ1 + l1θ̇

2
1 cos θ1 + l2θ̈2 sin θ2 + l2θ̇

2
2 cos θ2

)
= −T2 cos θ2 + m2g. (35)

We have then four differential equations, for four unknowns (θ1, θ2, T1, T2).
Trigonometric identities such as cos2 θ + sin2 θ = 1, and sin θ2 cos θ1 − cos θ2 sin θ1 =

sin(θ2 − θ1) can be used to write the equations of motion as:

l1θ̈1 = (T2/m1) sin(θ2 − θ1)− g sin θ1 (36)
l1θ̇

2
1 = (T1/m1)− (T2/m1) cos(θ2 − t1)− g cos θ1 (37)

l1θ̈1 cos(θ2 − θ1) + l1θ̇
2
1 sin(θ2 − θ1) + l2θ̈2 = −g sin θ2 (38)

−l1θ̈1 sin(θ2 − θ1) + l1θ̇
2
1 cos(θ2 − θ1) + l2θ̇

2
2 = (T2/m2)− g cos θ2. (39)

We now can use Eqns. 36,37 to make substitutions in Eqns. 38, 39, and use more trig
identities to simplify these equations further:

l2θ̈2 = −g sin θ2 − ((T2/m1) sin(θ2 − θ1)− g sin θ1) cos(θ2 − θ1)
− ((T1/m1)− (T2/m1) cos(θ2 − t1)− g cos θ1) sin(θ2 − θ1)

= −(T1/m1) sin(θ2 − θ1) (40)

l2θ̇
2
2 = (T2/m2)− g cos θ2 + ((T2/m1) sin(θ2 − θ1)− g sin θ1) sin(θ2 − θ1)

− ((T1/m1)− (T2/m1) cos(θ2 − t1)− g cos θ1) cos(θ2 − θ1)
= (T2/m2) + (T2/m1)− (T1/m1) cos(θ2 − θ1) (41)

The four equations of motion are then

l1θ̈1 = (T2/m1) sin(θ2 − θ1)− g sin θ1 (42)
l1θ̇

2
1 = (T1/m1)− (T2/m1) cos(θ2 − θ1)− g cos θ1 (43)

l2θ̈2 = −(T1/m1) sin(θ2 − θ1) (44)
l2θ̇

2
2 = (T2/m2) + (T2/m1)− (T1/m1) cos(θ2 − θ1) (45)
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Since the equations do not have derivatives of T1, T2, the best way to cast these equa-
tions for analytical or numerical solution is to obtain two differential equations for θ1, θ2

without T1, T2 terms, and use their solutions in expressions for T1, T2 in terms of θ1, θ2 and
their derivatives.

We obtain such expressions for T1, T2 from Eqns. 44, 42:

T1 = −m1
l2θ̈2

sin(θ2 − θ1)
(46)

T2 = m1
l1θ̈1 + g sin θ1

sin(θ2 − θ1)
(47)

We use these expressions in Eqn. 43:

l1θ̇
2
1 = (T1/m1)− (T2/m1) cos(θ2 − θ1)− g cos θ1

= − l2θ̈2

sin(θ2 − θ1)
− l1θ̈1 + g sin θ1

sin(θ2 − θ1)
cos(θ2 − θ1)− g cos θ1

−l1θ̇
2
1 sin(θ2 − θ1) = l2θ̈2 + l1θ̈1 cos(θ2 − θ1) + g sin θ2 (48)

3 Lagrange’s equations

3.1 Simple Pendulum

We have one generalized coordinate, θ, so we want to write the Lagrangian in terms of θ, θ̇
and then derive the equation of motion for θ.

The kinetic energy is T = (1/2)mv2 = (1/2)ml2θ̇2 (using Eq. 11 for the velocity). The
potential energy is the gravitational potential energy, V = −mgy = −mgl cos θ. Notice we
can derive the gravitational force from the potential, Fg = −∇V = mg(0, 1) = mg, but
not the tension force on the pendulum: that is a constraint force.

The Lagrangian is

L = T − V =
1
2
ml2θ̇2 + mgl cos θ (49)

The Lagrange equation is

0 =
d

dt

∂L

∂θ̇
− ∂L

∂θ
(50)

=
d

dt

(
ml2θ̇

)
− (−mgl sin θ) (51)

= ml2θ̈ + mgl sin θ (52)
lθ̈ = −g sin θ (53)
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This is, of course, the same equation we derived from Newton’s laws, Eq. 28. We do not
have, however, an equation to tell us about the tension, similar to Eq. 29: we need to use
Lagrange multipliers to obtain constraint forces.

3.2 Double Pendulum

We need to write the kinetic and potential energy in terms of the generalized coordiantes
θ1, θ2. We already wrote velocity vectors in terms of the angular variables in Eqns. 15,19.
Using those expressions, the kinetic energy is

T =
1
2
m1v

2
1 +

1
2
m2v

2
2 (54)

=
1
2
m1l

2
1θ̇

2
1 +

1
2
m2

(
l21θ̇

2
1 + l22θ̇

2
2 + 2l1l2θ̇1θ̇2 cos(θ2 − θ1)

)
(55)

=
1
2
(m1 + m2)l21θ̇

2
1 +

1
2
m2l

2
2θ̇

2
2 + m2l1l2θ̇1θ̇2 cos(θ2 − θ1) (56)

The potential energy is the gravitational potential energy;

V = −m1gy1 −m2gy2 (57)
= −m1gl1 cos θ1 −m2g(l1 cos θ1 + l2 cos θ2) (58)
= −(m1 + m2)gl1 cos θ1 −m2gl2 cos θ2 (59)

The Lagrangian is then

L = T − V

=
1
2
(m1 + m2)l21θ̇

2
1 +

1
2
m2l

2
2θ̇

2
2

+m2l1l2θ̇1θ̇2 cos(θ2 − θ1) + (m1 + m2)gl1 cos θ1 + m2gl2 cos θ2 (60)

We begin calculating the terms needed for the Lagrange equation for θ1:

∂L

∂θ̇1

= (m1 + m2)l21θ̇1 + m2l1l2θ̇2 cos(θ2 − θ1) (61)

d

dt

∂L

∂θ̇1

= (m1 + m2)l21θ̈1 + m2l1l2θ̈2 cos(θ2 − θ1)

−m2l1l2θ̇
2
2 sin(θ2 − θ1) + m2l1l2θ̇1θ̇2 sin(θ2 − θ1) (62)

∂L

∂θ1
= m2l1l2θ̇1θ̇2 sin(θ2 − θ1)− (m1 + m2)gl1 sin θ1 (63)

Lagrange’s equation for θ1 is then

0 =
d

dt

∂L

∂θ̇1

− ∂L

∂θ1

= (m1 + m2)l21θ̈1 + m2l1l2θ̈2 cos(θ2 − θ1)
−m2l1l2θ̇

2
2 sin(θ2 − θ1) + (m1 + m2)gl1 sin θ1 (64)
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Similarly, the Lagrange’s equation for θ2 is

∂L

∂θ̇2

= m2l
2
2θ̇2 + m2l1l2θ̇1 cos(θ2 − θ1) (65)

d

dt

∂L

∂θ̇2

= m2l
2
2θ̈2 + m2l1l2θ̈1 cos(θ2 − θ1)

+m2l1l2θ̇
2
1 sin(θ2 − θ1)−m2l1l2θ̇1θ̇2 sin(θ2 − θ1) (66)

∂L

∂θ2
= −m2l1l2θ̇1θ̇2 sin(θ2 − θ1)−m2gl2 sin θ2 (67)

0 =
d

dt

∂L

∂θ̇2

− ∂L

∂θ2

= m2l
2
2θ̈2 + m2l1l2θ̈1 cos(θ2 − θ1)

+m2l1l2θ̇
2
1 sin(θ2 − θ1) + m2gl2 sin θ2 (68)

We collect the two Lagrange equations of motion, which are, of course, the same ones
we got from Newton’s law:

(m1 + m2)l1θ̈1 + m2l2θ̈2 cos(θ2 − θ1) = m2l2θ̇
2
2 sin(θ2 − θ1)− (m1 + m2)g sin θ1 (69)

l2θ̈2 + l1θ̈1 cos(θ2 − θ1) = −l1θ̇
2
1 sin(θ2 − θ1)− g sin θ2 (70)
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