Name: \qquad Instructor: \qquad

Louisiana State University Physics 2102, Exam 1,

September 16, 2010.

- Please be sure to write your name and class instructor above.
- The test consists of 3 questions (multiple choice), and 4 problems (numerical). All numerical quantities must have appropriate units. Points will be deducted if units are absent.
- For the problems: Show your reasoning and your work - no credit will be given for an answer without explanation or work. Note that in many of the problems, you can do parts (b) or (c) even if you get stuck on (a) or (b).
- You may use scientific or graphing calculators. Cell phones cannot be used as calculators.
- Feel free to detach, use, and keep the formula sheet pages. No other reference material is allowed during the exam.
- Good Luck!

Question 1 [10 points]

Two point charges, a positive charge of +9 Q and a negative charge of -Q , are fixed in place on an x-axis, separated by a distance d . The axis is divided into three regions: I, II, and III, as shown.

(a) [6 points] In which region (or regions) along the axis could you place a third point charge, in such a way that the third charge would be in equilibrium? (circle the right answer)

I II III I and II I and III
(b) [4 points] If equilibrium is possible, should this third charge be positive or negative, or does it matter at all?
positive
negative
doesn't matter

Problem 1 [15 points]

An alpha particle is a helium nucleus, composed of 2 protons and 2 neutrons. Thus it possesses a mass of approximately $6.7 \times 10^{-27} \mathrm{~kg}$, and a charge of +2 e . By comparison, the nucleus of an atom of gold has 79 protons and 118 neutrons, giving a mass of $3.3 \times 10^{-25} \mathrm{~kg}$, and a charge of +79 e .

The figure shows and alpha particle is moving towards a gold nucleus.
(a) [6 points] How close would the alpha particle have to approach the gold nucleus in order to experience a force of 1 N due to the presence of the gold nucleus?

(b) [5 points] What is the magnitude and direction of the acceleration experienced by the alpha particle when it is at the position found above in part (a)? Indicate the direction of \mathbf{a} in the figure or with words.
(c) [4 points] When the alpha particle is at the position found in (a), calculate the magnitude of the electrostatic force exerted on the gold nucleus?

Question 2 [10 points]

The figure shows three different orientation of an electric dipole (with dipole moment \mathbf{p}) in a uniform electric field \mathbf{E}, which points in the positive x-direction.
(1)

(2)

(3)

(a) [4 pts] Rank the scenarios according to the potential energy of the dipole in the electric field, greatest first (circle the right answer):

$$
\begin{gathered}
\mathrm{U}_{1}>\mathrm{U}_{2}>\mathrm{U}_{3} \quad \mathrm{U}_{2}>\mathrm{U}_{1}>\mathrm{U}_{3} \\
\mathrm{U}_{1}>\mathrm{U}_{2}=\mathrm{U}_{3}
\end{gathered}
$$

(b) [3 pts] Rank the scenarios according to the magnitude of the torque on the dipole in the electric field, greatest first (circle the right answer):
$\tau_{1}>\tau_{2}>\tau_{3}$
$\tau_{2}>\tau_{1}>\tau_{3}$
$\tau_{2}>\tau_{1}=\tau_{3}$
$\tau_{1}>\tau_{2}=\tau_{3} \quad$ All tie
(c) [3 pts] In which scenario (or scenarios) is the dipole in equilibrium? Circle the right answer.

Problem 2 [20 points]

The figure shows a one-dimensional insulating rod of length $L=8.0 \mathrm{~cm}$. It has charge $\mathrm{q}=-2.0$ nC deposited uniformly along its length, with a constant linear charge density. The point P is located distance $a=5.0 \mathrm{~cm}$ from the end of the rod.

(a) [4 pts] Calculate the linear charge density of the rod
(b) [3 pts] What is the direction of the electric field at point P , due to the charged rod? Indicate your answer on the figure.
(c) [5 pts] Pick a charge element $d q$ along the rod and write down an expression for the magnitude of the electric field $d E$ at point P due to charge $d q$. Indicate the location of $d q$ on the figure.
(d) [8 pts] Calculate the magnitude of the electric field at point P. Useful integral: $\int 1 / x^{2} \mathrm{~d} x=[-1 / x]$

Question 3 [10 points]

The figure shows a charge $+q$ which is located at a distance $d / 2$ directly above the center of a surface which is a square with sides d.

(a) [7 pts] What is the magnitude of the electric flux through the square surface? (Hint 1: Think of the square as one face of a cube with edges d. Hint 2 : no calculus involved). Circle the correct answer.

$$
\begin{array}{lll}
q / \varepsilon_{0} & q / 2 \varepsilon_{0} & q / 4 \varepsilon_{0} \\
\\
q / 6 \varepsilon_{0} & q /\left(4 \pi \varepsilon_{0} d^{2}\right) & \\
& & \\
& & \left(\pi \varepsilon_{0} d^{2}\right)
\end{array}
$$

(b) [3 pts] If you were to move the charge closer to the square, so that it would be located at distance $d / 4$ above the square, would the magnitude of the flux through the square be the same or different? Circle the correct answer:
Larger
The same
Smaller

Problem 3 [20 points]

A charged particle is suspended at the center of two concentric spherical shells that are very thin and made of non-conducting material. The figure (a) below shows a cross section. Figure (b) shows the net electric flux through a Gaussian sphere centered on the particle, as a function of the radius r of the sphere. The scale on the vertical axis is given in units of $\mathrm{Nm}^{2} / \mathrm{C}$

(a) [7 pts] Calculate the charge of the particle at the center of the shell (magnitude and sign):
(b) [7 pts] Calculate the net charge on shell A:
(d) [6 pts] Indicate on the figure the direction of the electric field lines outside of shell B: Explain your choice briefly.

Problem 4 [15 points]

The figure shows a uniform electric field with magnitude $E=150 \mathrm{~V} / \mathrm{m}$. Three different locations in the electric field are marked with A, B, and C.

(a) $[4 \mathrm{pts}]$ Circle the correct statement about the electric potential at points A, B, and C :

$$
V_{\mathrm{C}}<V_{\mathrm{A}}<V_{\mathrm{B}} \quad V_{\mathrm{C}}<V_{\mathrm{A}}=V_{\mathrm{B}} \quad V_{\mathrm{C}}>V_{\mathrm{A}}=V_{\mathrm{B}} \quad V_{\mathrm{C}}>V_{\mathrm{A}}>V_{\mathrm{B}}
$$

(b) [6 pts] Calculate the work needed by an external force to move a point charge $\mathrm{q}=-2.0 \mu \mathrm{C}$ (at rest) from point C to point A. Specify both magnitude and sign of the work:
(c) [5 pts] Calculate the work (magnitude and sign) needed by an external force to move a point charge $\mathrm{q}=-2.0 \mu \mathrm{C}$ (at rest)
(i) from point C to point B :
(ii) from point C to point A, then from A to B, then from B to C :

