

Capacitors and Capacitance

Capacitor: any two conductors, one with charge +Q , other with charge -Q

Potential DIFFERENCE between conductors $=\mathrm{V}$
$\mathrm{Q}=\mathbf{C V}-\mathrm{C}=$ capacitance
Units of capacitance:
Farad (F) = Coulomb/Volt

+Q
Uses: storing and releasing electric charge/energy.
Most electronic capacitors: micro-Farads ($\mu \mathrm{F}$), pico-Farads (pF) -- $10^{-12} \mathrm{~F}$
New technology: compact 1 F capacitors

Capacitance

- Capacitance depends only on GEOMETRICAL factors and on the MATERIAL that separates the two conductors
- e.g. Area of conductors, separation, whether the space in between is filled with air, plastic, etc.

(We first focus on capacitors where gap is filled by AIR!)

Capacitors and Capacitance

Capacitor: any two conductors, one with charge $+Q$, other with charge -Q

Potential DIFFERENCE between
conductors $=\mathrm{V}$
$\mathrm{Q}=\mathbf{C V} \mathrm{C}=$ capacitance
Units of capacitance:
Farad (F) = Coulomb/Volt

Uses: storing and releasing electric charge/energy.
Most electronic capacitors: micro-Farads ($\mu \mathrm{F}$), pico-Farads (pF) $--10^{-12} \mathrm{~F}$
New technology: compact 1 F capacitors

Parallel Plate Capacitor

We want capacitance: $\mathrm{C}=\mathrm{Q} / \mathrm{V}$
E field between the plates: (Gauss' Law)

$$
E=\frac{\sigma}{\varepsilon_{0}}=\frac{Q}{\varepsilon_{0} A}
$$

Relate E to potential difference V:

$$
V=\int_{0}^{d} \vec{E} \cdot d \vec{x}=\int_{0}^{d} \frac{Q}{\varepsilon_{0} A} d x=\frac{Q d}{\varepsilon_{0} A}
$$

What is the capacitance C ?

$$
C=\frac{Q}{V}=\frac{\varepsilon_{0} A}{d}
$$

Area of each plate $=A$
Separation $=d$ charge $/$ area $=\sigma=Q / A$

Parallel Plate Capacitor -- example

- A huge parallel plate capacitor consists of two square metal plates of side 50 cm , separated by an air gap of 1 mm
- What is the capacitance?
- $C=\varepsilon_{0} \mathrm{~A} / \mathrm{d}=$
$\left(8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right)\left(0.25 \mathrm{~m}^{2}\right) /(0.001 \mathrm{~m})$
$=2.21 \times 10^{-9} \mathrm{~F}$
(small!!)
Lesson: difficult to get large values of capacitance without special tricks!

Isolated Parallel Plate Capacitor

$$
C=\frac{Q}{V}=\frac{Q}{E d}=\frac{\varepsilon_{0} A}{d}
$$

- A parallel plate capacitor of capacitance C is charged using a battery.
- Charge $=\mathrm{Q}$, potential difference $=\mathrm{V}$.
- Battery is then disconnected.

- If the plate separation is INCREASED, does potential difference V :
(a) Increase?
(b) Remain the same?
(c) Decrease?
- Q is fixed!
- C decreases $\left(=\varepsilon_{0} \mathrm{~A} / \mathrm{d}\right)$
- $\mathrm{Q}=\mathrm{CV}$; V increases.

Parallel Plate Capacitor \& Battery

$$
C=\frac{Q}{V}=\frac{Q}{E d}=\frac{\varepsilon_{0} A}{d}
$$

- A parallel plate capacitor of capacitance C is charged using a battery.
- Charge $=\mathrm{Q}$, potential difference $=\mathrm{V}$.
- Plate separation is INCREASED while battery remains connected.

Does the electric field inside:
(a) Increase?
(b) Remain the same?
(c) Decrease?

Spherical Capacitor

What is the electric field inside the capacitor? (Gauss' Law)

$$
E=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}
$$

Concentric spherical shells: Charge +Q on inner shell, -Q on outer shell between the plates:

$$
V=\int_{a}^{b} \vec{E} \cdot d \vec{r}=\int_{a}^{b} \frac{k Q}{r^{2}} d r=\left[-\frac{k Q}{r}\right]_{a}^{b}=k Q\left[\frac{1}{a}-\frac{1}{b}\right]
$$

Spherical Capacitor

What is the capacitance?

$$
\begin{aligned}
& \mathrm{C}=\mathrm{Q} / \mathrm{V}= \\
& =\frac{\mathscr{Q}}{\frac{\mathscr{Q}}{4 \pi \varepsilon_{0}}\left[\frac{1}{a}-\frac{1}{b}\right]} \\
& =\frac{4 \pi \varepsilon_{0} a \not Q}{(\ell-\not Q)}
\end{aligned}
$$

Concentric spherical shells: Charge +Q on inner shell, -Q on outer shell

Isolated sphere: let $\mathrm{b} \gg \mathrm{a}$, $C=4 \pi \varepsilon_{0} a$

Cylindrical Capacitor

What is the electric field in
between the plates?

$$
E=\frac{Q}{2 \pi \varepsilon_{0} r L}
$$

Length of capacitor $=\mathrm{L}$
+Q on inner rod, -Q on outer shell between the plates:

$$
\begin{aligned}
& V=\int_{a}^{b} \vec{E} \cdot d \vec{r} \\
& =\int_{a}^{b} \frac{Q}{2 \pi \varepsilon_{0} r L} d r=\left[\frac{Q \ln r}{2 \pi \varepsilon_{0} L}\right]_{a}^{b}
\end{aligned}
$$

Relate E to potential difference
e

$$
=\frac{Q}{2 \pi \varepsilon_{0} L} \ln \left(\frac{b}{a}\right)
$$

Cylindrical Capacitor

What is the capacitance C ?

Length of capacitor $=\mathrm{L}$ Charge +Q on inner rod, -Q on outer shell

Example: co-axial cable.

Summary

- Any two charged conductors form a capacitor.
- Capacitance : $\mathrm{C}=\mathrm{Q} / \mathrm{V}$
-Simple Capacitors:
Parallel plates: $\mathrm{C}=\varepsilon_{0} \mathrm{~A} / \mathrm{d}$

Spherical: $\mathrm{C}=4 \pi \varepsilon_{0} \mathrm{ab} /(\mathrm{b}-\mathrm{a})$
Cylindrical: $\mathrm{C}=2 \pi \varepsilon_{0} \mathrm{~L} / \ln (\mathrm{b} / \mathrm{a})$

Capacitors in Parallel

- A wire is a conductor, so it is an equipotential.
- Capacitors in parallel have SAME potential difference but NOT ALWAYS same charge.
- $\mathrm{V}_{\mathrm{AB}}=\mathrm{V}_{\mathrm{CD}}=\mathrm{V}$
- $\mathrm{Q}_{\text {total }}=\mathrm{Q}_{1}+\mathrm{Q}_{2}$
- $\mathrm{C}_{\text {eq }} \mathrm{V}=\mathrm{C}_{1} \mathrm{~V}+\mathrm{C}_{2} \mathrm{~V}$
- $\mathrm{C}_{\mathrm{eq}}=\mathrm{C}_{1}+\mathrm{C}_{2}$
- Equivalent parallel capacitance $=$ sum of capacitances

PARALLEL:

- V is same for all capacitors

- Total charge in $\mathrm{C}_{\mathrm{eq}}=$ sum of charges

Capacitors in series

- $\mathrm{Q}_{1}=\mathrm{Q}_{2}=\mathrm{Q}$ (WHY??)
- $\mathrm{V}_{\mathrm{AC}}=\mathrm{V}_{\mathrm{AB}}+\mathrm{V}_{\mathrm{BC}}$
$\frac{Q}{C_{e q}}=\frac{Q}{C_{1}}+\frac{Q}{C_{2}}$
$\frac{1}{C_{e q}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}$

SERIES:

- Q is same for all capacitors
- Total potential difference in $\mathrm{C}_{\mathrm{eq}}=\operatorname{sum}$ of V

Capacitors in parallel and in series

- In parallel :
$-\mathrm{C}_{\mathrm{eq}}=\mathrm{C}_{1}+\mathrm{C}_{2}$
$-\mathrm{V}_{\mathrm{eq}}=\mathrm{V}_{1}=\mathrm{V}_{2}$
$-\mathbf{Q}_{\mathrm{eq}}=\mathbf{Q}_{1}+\mathbf{Q}_{2}$

- In series :
$-1 / \mathrm{C}_{\text {eq }}=1 / \mathrm{C}_{1}+1 / \mathrm{C}_{2}$
$-\mathbf{V}_{\mathrm{eq}}=\mathrm{V}_{1+} \mathrm{V}_{2}$
$-\mathbf{Q}_{\mathrm{eq}}=\mathbf{Q}_{1}=\mathbf{Q}_{2}$

Example 1

What is the charge on each capacitor?

- $\mathrm{Q}=\mathrm{CV} ; \mathrm{V}=120 \mathrm{~V}$
- $\mathrm{Q}_{1}=(10 \mu \mathrm{~F})(120 \mathrm{~V})=1200 \mu \mathrm{C}$
- $\mathrm{Q}_{2}=(20 \mu \mathrm{~F})(120 \mathrm{~V})=2400 \mu \mathrm{C}$
- $\mathrm{Q}_{3}=(30 \mu \mathrm{~F})(120 \mathrm{~V})=3600 \mu \mathrm{C}$

Note that:

- Total charge $(7200 \mu \mathrm{C})$ is shared between the 3 capacitors in the ratio $\mathrm{C}_{1}: \mathrm{C}_{2}: \mathrm{C}_{3}$-- i.e. 1:2:3

Example 2

What is the potential difference across each capacitor?

- $\mathrm{Q}=\mathrm{CV} ; \mathrm{Q}$ is same for all capacitors
- Combined C is given by:
$\frac{1}{C_{e q}}=\frac{1}{(10 \mu F)}+\frac{1}{(20 \mu F)}+\frac{1}{(30 \mu F)}$

- $\mathrm{C}_{\text {eq }}=5.46 \mu \mathrm{~F}$
- $\mathrm{Q}=\mathrm{CV}=(5.46 \mu \mathrm{~F})(120 \mathrm{~V})=655 \mu \mathrm{C}$
- $\mathrm{V}_{1}=\mathrm{Q} / \mathrm{C}_{1}=(655 \mu \mathrm{C}) /(10 \mu \mathrm{~F})=65.5 \mathrm{~V}$
- $\mathrm{V}_{2}=\mathrm{Q} / \mathrm{C}_{2}=(655 \mu \mathrm{C}) /(20 \mu \mathrm{~F})=32.75 \mathrm{~V}$
- $\mathrm{V}_{3}=\mathrm{Q} / \mathrm{C}_{3}=(655 \mu \mathrm{C}) /(30 \mu \mathrm{~F})=21.8 \mathrm{~V}$

Note: 120 V is shared in the ratio of INVERSE capacitances i.e.1:(1/2): (1/3)
(largest C gets smallest V)

Example 3

In the circuit shown, what is the charge on the $10 \mu \mathrm{~F}$ capacitor?

- The two $\mathbf{5} \boldsymbol{\mu} \mathbf{F}$ capacitors are in parallel
- Replace by $\mathbf{1 0 \mu F}$
- Then, we have two $\mathbf{1 0 \mu F}$ capacitors in series
- So, there is 5 V across the $\mathbf{1 0 \mu F}$ capacitor of interest
- Hence, $\mathrm{Q}=(\mathbf{1 0 \mu} \mathbf{F})(5 \mathrm{~V})=\mathbf{5 0} \boldsymbol{\mu} \mathrm{C}$

Energy Stored in a Capacitor

- Start out with uncharged capacitor
- Transfer small amount of charge dq from one plate to the other until charge on each plate has magnitude \mathbf{Q}
- How much work was needed?

$$
U=\int_{0}^{Q} V d q=\int_{0}^{Q} \frac{q}{C} d q=\frac{Q^{2}}{2 C}=\frac{C V^{2}}{2}
$$

Energy Stored in Electric Field

- Energy stored in capacitor: $\mathbf{U}=\mathrm{Q}^{2 /(2 C)}=\mathrm{CV}^{2} / 2$
- View the energy as stored in ELECTRIC FIELD
- For example, parallel plate capacitor: Energy DENSITY = energy/volume $=\mathbf{u}=$ $U=\frac{Q^{2}}{2 C A d}=\frac{Q^{2}}{2\left(\frac{\varepsilon_{0} A}{U}\right) A}=\frac{Q^{2}}{2 \varepsilon_{0} A^{2}}=\frac{\varepsilon_{0}}{2}\left(\frac{Q}{\varepsilon_{0} A}\right)^{2}=\frac{\varepsilon_{0} E^{2}}{2}$

Example

- $10 \mu \mathrm{~F}$ capacitor is initially charged to 120 V . $20 \mu \mathrm{~F}$ capacitor is initially uncharged.
- Switch is closed, equilibrium is reached.
- How much energy is dissipated in the process?

Initial charge on $10 \mu \mathrm{~F}=(10 \mu \mathrm{~F})(120 \mathrm{~V})=1200 \mu \mathrm{C}$
After switch is closed, let charges $=Q_{1}$ and Q_{2}.

$20 \mu \mathrm{~F}\left(\mathrm{C}_{2}\right)$

Charge is conserved: $\mathrm{Q}_{1}+\mathrm{Q}_{2}=1200 \mu \mathrm{C}$
Also, $\mathrm{V}_{\text {final }}$ is same: $\frac{Q_{1}}{C_{1}}=\frac{Q_{2}}{C_{2}} \dagger Q_{1}=\frac{Q_{2}}{2} \zeta \left\lvert\, \begin{aligned} & \bullet \mathrm{Q}_{1}=400 \mu \mathrm{C} \\ & \bullet \mathrm{Q}_{2}=800 \mu \mathrm{C} \\ & \cdot \mathrm{V}_{\text {final }}=\mathrm{Q}_{1} / \mathrm{C}_{1}=40 \mathrm{~V}\end{aligned}\right.$
Initial energy stored $=(1 / 2) \mathrm{C}_{1} \mathrm{~V}_{\text {initial }}{ }^{2}=(0.5)(10 \mu \mathrm{~F})(120)^{2}=72 \mathrm{~mJ}$
Final energy stored $=(1 / 2)\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right) \mathrm{V}_{\text {final }}{ }^{2}=(0.5)(30 \mu \mathrm{~F})(40)^{2}=24 \mathrm{~mJ}$
Energy lost $($ dissipated $)=48 \mathrm{~mJ}$

Dielectric Constant

- If the space between capacitor plates is filled by a dielectric, the capacitance INCREASES by a factor κ
- This is a useful, working definition for dielectric constant.
- Typical values of κ : 10-200
$C=\kappa \varepsilon_{0} A / d$

Example

- Capacitor has charge Q , voltage V
- Battery remains connected while dielectric slab is inserted.
- Do the following increase, decrease or stay the same:

- Potential difference?
- Capacitance?
- Charge?
- Electric field?

Example (soln)

- Initial values:
capacitance $=\mathbf{C}$; charge $=\mathbf{Q}$;
potential difference $=\mathbf{V}$;
electric field $=\mathbf{E}$;
- Battery remains connected

- V is FIXED; $\mathbf{V}_{\text {new }}=\mathbf{V}$ (same)
- $C_{\text {new }}=\kappa C$ (increases)
- $Q_{\text {new }}=(\kappa C) V=\kappa Q$ (increases).
- Since $\mathbf{V}_{\text {new }}=\mathbf{V}, \mathbf{E}_{\text {new }}=\mathbf{E}$ (same)

Energy stored? $u=\varepsilon_{0} E^{2} / 2 \Rightarrow u=\kappa \varepsilon_{0} E^{2} / 2=\varepsilon E^{2} / 2$

Summary

- Capacitors in series and in parallel:
- in series: charge is the same, potential adds, equivalent capacitance is given by $1 / \mathrm{C}=1 / \mathrm{C}_{1}+1 / \mathrm{C}_{2}$ - in parallel: charge adds, potential is the same, equivalent capaciatnce is given by $\mathrm{C}=\mathrm{C}_{1}+\mathrm{C}_{2}$.
- Energy in a capacitor: $\mathrm{U}=\mathrm{Q}^{2} / 2 \mathrm{C}=\mathrm{CV}^{2} / 2$; energy density $\mathrm{u}=\varepsilon_{0} \mathrm{E}^{2} / 2$
- Capacitor with a dielectric: capacitance increases $C^{\prime}=\kappa C$

