

Electric Potential on Perpendicular Bisector of Dipole

You bring a charge of -3 C from infinity to a point P on the perpendicular bisector of a dipole as shown. Is the work that you do:
a)Positive?
b)Negative?
c)Zero?

Electric Potential of Many Point Charges

What is the electric potential at the center of each circle?

- Potential is a SCALAR
- All charges are equidistant from each center, hence contribution from each charge has same magnitude: V
- +Q has positive contribution
- -Q has negative contribution

$$
\begin{aligned}
& \mathrm{A}:-2 \mathrm{~V}+3 \mathrm{~V}=+\mathrm{V} \\
& \mathrm{~B}:-5 \mathrm{~V}+2 \mathrm{~V}=-3 \mathrm{~V} \\
& \mathrm{C}:-2 \mathrm{~V}+2 \mathrm{~V}=0
\end{aligned}
$$

Note that the electric field at the center is a vector, and is NOT zero for C !

Continuous Charge Distributions

- Divide the charge distribution into differential elements
- Write down an expression for potential from a typical element -- treat as point charge
- Integrate!
- Simple example: circular rod of radius R , total charge Q ; find V at center.

$$
\begin{gathered}
V=\int \frac{d q}{4 \pi \varepsilon_{0} R} \\
=\frac{1}{4 \pi \varepsilon_{0} R} \int d q=\frac{Q}{4 \pi \varepsilon_{0} R}
\end{gathered}
$$

Potential of Continuous Charge Distribution: Example

- Uniformly charged rod
- Total charge q

$$
\lambda=q / L \quad d q=\lambda d x
$$

- Length L
- What is V at position P shown?

$$
V=\int \frac{k d q}{r}=\int_{0}^{L} \frac{k \lambda d x}{(L+a-x)}
$$

$$
=k \lambda[-\ln (L+a-x)]_{0}^{L}
$$

$$
V=k \lambda \ln \left[\frac{L+a}{a}\right]
$$

Summary so far:

- Electric potential: work needed to bring +1 C from infinity; units $=\mathrm{V}$
- Work needed to bring a charge from infinity is $\mathrm{W}=\mathrm{qV}$
- Electric potential is a scalar -- add contributions from individual point charges
- We calculated the electric potential produced:
- by a single charge: $\mathrm{V}=k q / r$,
- by several charges using superposition, and
- by a continuous distribution using integrals.

Electric Field \& Potential:
 A Neat Relationship!

Notice the following:

- Point charge:
$-\mathrm{E}=\mathrm{kQ} / \mathrm{r}^{2}$
$-\mathrm{V}=\mathrm{kQ} / \mathrm{r}$
- Dipole (far away):
- $\mathrm{E} \sim \mathrm{kp} / \mathrm{r}^{3}$
$-\mathrm{V} \sim \mathrm{kp} / \mathrm{r}^{2}$
- E is given by a DERIVATIVE of V!

Focus only on a simple case:
electric field that points along +x axis but whose magnitude varies with x .

$$
E_{x}=\Theta \frac{d V}{d x}
$$

Note:

- MINUS sign!
- Units for E -- VOLTS/

METER (V/m)

Electric Field \& Potential: Example

- Hollow metal sphere of radius R has a charge +q
- Which of the following is the electric potential V as a function of distance r from center of sphere?

Potential Energy of A System of Charges

- 4 point charges (each +Q) are connected by strings, forming a square of side L
- If all four strings suddenly snap, what is the kinetic energy of each charge when they are very far apart?
- Use conservation of energy:
- Final kinetic energy of all four charges = initial potential energy stored $=$ energy required to assemble the system of charges

Do this from scratch! Understand, not memorize the formula in the book!

Potential Energy of A System of Charges: Solution

- No energy needed to bring in first charge: $U_{1}=0$
- Energy needed to bring in

Energy needed to bring in
2nd charge: $U_{2}=Q V_{1}=\frac{k Q^{2}}{L}$

- Energy needed to bring in 3rd charge $=$
$U_{3}=Q V=Q\left(V_{1}+V_{2}\right)=\frac{k Q^{2}}{L}+\frac{k Q^{2}}{\sqrt{2} L}$
- Energy needed to bring in 4th charge =
$U_{4}=Q V=Q\left(V_{1}+V_{2}+V_{3}\right)=\frac{2 k Q^{2}}{L}+\frac{k Q^{2}}{\sqrt{2} L}$

Total potential energy is sum of all the individual terms shown on left hand side $=\frac{k Q^{2}}{L}(4+\sqrt{2})$

So, final kinetic energy of each charge $=\frac{k Q^{2}}{4 L}(4+\sqrt{2})$

Equipotentials and Conductors

- Conducting surfaces are EQUIPOTENTIALs
- At surface of conductor, E is normal to surface
- Hence, no work needed to move a charge from one point on a conductor surface to another
- Therefore, electric potential is constant on the surface of conductors.

- Equipotentials are normal to E, so they follow the shape of the conductor near the surface.
- Inside the conductor, $\mathrm{E}=0$: therefore, potential is constant. Potential is not necessarily zero! It is equal to the potential on the surface.

Conductors change the field around them!

An uncharged conductor:

A uniform electric field:

An uncharged conductor in the initially uniform electric field:

- $E=\sigma / \varepsilon_{0}$ for a conductor, hence STRONGER electric fields at sharply curved surfaces!
- Used for attracting or getting rid of charge:
- lightning rods
- Van de Graaf -- metal brush transfers charge from rubber belt
- Mars pathfinder mission -tungsten points used to get rid of accumulated charge on rover (electric breakdown on Mars occurs at $\sim 100 \mathrm{~V} / \mathrm{m}$)

Summary:

- Electric field and electric potential: $\mathrm{E}=-d \mathrm{~V} / d x$
- Electric potential energy: work used to build the system, charge by charge. Use $\mathrm{W}=\mathrm{qV}$ for each charge.
- Conductors: the charges move to make their surface equipotentials.
- Charge density and electric field are higher on sharp points of conductors.

