

Electric Potential

Electric potential energy, electric potential

Electric potential energy of a system $=$
$=-$ work (against electrostatic forces) needed to needed to build the system

$$
\mathbf{U}=-\mathbf{W}
$$

Electric potential difference between two points = work per unit charge needed to move a charge between the two points:

$$
\Delta \mathbf{V}=\mathbf{V}_{\mathrm{f}}-\mathbf{V}_{\mathrm{i}}=-\mathbf{W} / \mathbf{q}
$$

Electric potential energy, electric potential

Units : $[\mathrm{U}]=[\mathrm{W}]=$ Joules;

$$
[\mathrm{V}]=[\mathrm{W} / \mathrm{q}]=\text { Joules } / \mathrm{C}=\mathrm{Nm} / \mathrm{C}=\text { Volts }
$$

$$
[\mathrm{E}]=\mathrm{N} / \mathrm{C}=\mathrm{Vm}
$$

$1 \mathrm{eV}=$ work needed to move an electron through a potential difference of 1 V :

$$
\begin{aligned}
\mathrm{W} & =\mathrm{q} \Delta \mathrm{~V}=\mathrm{e} \times 1 \mathrm{~V} \\
& =1.6010^{-19} \mathrm{C} \times 1 \mathrm{~J} / \mathrm{C}=1.6010^{-19} \mathrm{~J}
\end{aligned}
$$

Electric field lines and equipotential surfaces

Given a charged system, we can:

- calculate the electric field everywhere in space
- calculate the potential difference between every point and a point where $\mathrm{V}=0$
- draw electric field lines
- draw equipotential surfaces

(c)
(b)

Equipotential Surfaces \& Electric

Field

- In a uniform electric field E, equipotentials are PLANES.
- Electric field points towards lower potential.
- In a gravitational field, a free mass moves from high to low potential. In an electric field, which of the following is true?
(a) Positive charge moves to lower V, negative charge moves to higher V
(b) Positive charge moves to higher V, negative charge moves to lower V
(c) All charge moves to lower V.

Note: all charges freely move to regions of lower potential ENERGY! Don't confuse potential with potential energy!

Electric Potential of a Point Charge

Potential $=\mathrm{V}=$ "Work you have to do to bring +1 C from infinity to distance r away from a point charge Q "

$$
\begin{array}{rlrl}
V & =-W / q=-\int_{\infty}^{r} \vec{F} \cdot d \vec{s} / q & \begin{array}{l}
\text { Note: if } \mathrm{Q} \text { were a } \\
\text { negative charge, } \\
\mathrm{V} \text { would be negative }
\end{array} \\
& =\int_{\infty}^{r} \vec{E} \cdot d \vec{s}=\int_{\infty}^{r} E d s & \\
& =\int_{\infty}^{r} \frac{k Q}{r^{2}} d r=-\left[-k \frac{Q}{R}\right]_{\infty}^{r}=k \frac{Q}{r}
\end{array}
$$

Electric Potential of Many Point Charges

- Electric potential is a SCALAR
- Just calculate the potential due to each individual point charge, and add together! (Make sure you get the SIGNS correct!)

$$
V=\sum_{i} k \frac{q_{i}}{r_{i}}
$$

Electric Potential of a Dipole (on axis)

What is V at a point at an axial distance r away from the midpoint of a dipole (on side of positive charge)?

$$
\begin{aligned}
V & =\frac{Q}{4 \pi \varepsilon_{0}\left(r-\frac{a}{2}\right)}-\frac{Q}{4 \pi \varepsilon_{0}\left(r+\frac{a}{2}\right)} \\
& =\frac{Q}{4 \pi \varepsilon_{0}}\left(\frac{\left(\nvdash+\frac{a}{2}\right)-\left(y^{\prime}-\frac{a}{2}\right)}{\left(r-\frac{a}{2}\right)\left(r+\frac{a}{2}\right)}\right) \\
& =\frac{(Q a)}{4 \pi \varepsilon_{0}\left(r^{2}-\frac{a^{2}}{4}\right)}
\end{aligned}
$$

Electric Potential on Perpendicular Bisector of Dipole

You bring a charge of -3 C from infinity to a point P on the perpendicular bisector of a dipole as shown. Is the work that you do:
a)Positive?
b)Negative?
c)Zero?

Electric Potential of Many Point Charges

What is the electric potential at the center of each circle?

- Potential is a SCALAR
- All charges are equidistant from each center, hence contribution from each

- +Q charge has same magnitude: V
- +Q has positive contribution
- - Q has negative contribution

$$
\begin{aligned}
& \mathrm{A}:-2 \mathrm{~V}+3 \mathrm{~V}=+\mathrm{V} \\
& \mathrm{~B}:-5 \mathrm{~V}+2 \mathrm{~V}=-3 \mathrm{~V} \\
& \mathrm{C}:-2 \mathrm{~V}+2 \mathrm{~V}=0
\end{aligned}
$$

Note that the electric field at the center is a vector, and is NOT zero for C !

Continuous Charge Distributions

- Divide the charge distribution into differential elements
- Write down an expression for potential from a typical element -- treat as point charge
- Integrate!
- Simple example: circular rod of radius R, total charge Q ; find V at center.

$$
\begin{gathered}
V=\int \frac{d q}{4 \pi \varepsilon_{0} R} \\
=\frac{1}{4 \pi \varepsilon_{0} R} \int d q=\frac{Q}{4 \pi \varepsilon_{0} R}
\end{gathered}
$$

Potential of Continuous Charge Distribution: Example

- Uniformly charged rod
- Total charge q

$$
\lambda=q / L \quad d q=\lambda d x
$$

- Length L
- What is V at position P shown?

$$
V=\int \frac{k d q}{r}=\int_{0}^{L} \frac{k \lambda d x}{(L+a-x)}
$$

$$
=k \lambda[-\ln (L+a-x)]_{0}^{L}
$$

$$
V=k \lambda \ln \left[\frac{L+a}{a}\right]
$$

Summary:

- Electric potential: work needed to bring +1 C from infinity; units = V
- Electric potential uniquely defined for every point in space -- independent of path!
- Electric potential is a scalar -- add contributions from individual point charges
- We calculated the electric potential produced:
- by a single charge: $\mathrm{V}=k q / r$,
- by several charges using superposition, and
- by a continuous distribution using integrals.

