

Ch 23 Summary:

- We define electric flux through a surface: $\Phi = \int \vec{E} \cdot d\vec{A}$
- Gauss' law provides a very direct way to compute the electric flux : $\Phi = q_{ins}/\varepsilon_0$
- In situations with symmetry, knowing the flux allows to compute the fields reasonably easily:
 - Spherical field of a spherical uniform charge: kq_{ins}/r^2
 - Uniform field of an insulating plate: $\sigma/2\epsilon_{0,}$; of a conducting plate: $\sigma/\epsilon_{0,}$.
 - Cylindrical field of a long wire: $2k\lambda/r$
- Properties of conductors: field inside is zero; excess charges are always on the surface; field on the surface is perpendicular and $E=\sigma/\epsilon_0$

