Physics 2102

Electric fields Gauss' law

Carl Friedrich Gauss 1777-1855

Electric field lines and forces

We want to calculate electric fields because we want to predict how charges would move in space: we want to know forces.

The drawings below represent electric field lines. Draw vectors representing the electric force on an electron and on a proton at the positions shown, disregarding forces between the electron and the proton.

(a)

Imagine the electron-proton pair is held at a distance by a rigid bar (this is a model for a water molecule). Can you predict how the dipole will move?

Electric charges and fields

We work with two different kinds of problems, easily confused:

- Given certain electric charges, we calculate the electric field produced by those charges.

Example: we calculated the electric field produced by the two charges in a dipole :

- Given an electric field, we calculate the forces applied by this electric field on charges that come into the field.

Example: forces on a single charge
 when immersed in the field of a dipole: (another example: force on a dipole when immersed in a uniform field)

Electric Dipole in a Uniform Field

- Net force on dipole $=0$; center of mass stays where it is.
- Net TORQUE τ : INTO page. Dipole rotates to line up in direction of E.
- $|\tau|=2(\mathrm{QE})(\mathrm{a} / 2)(\sin \theta)$

$$
=(\mathbf{Q a})(\mathbf{E}) \sin \theta
$$

$$
=|p| E \sin \theta=|p \times E|
$$

- The dipole tends to "align" itself with the field lines.

$$
\vec{\tau}=\vec{p} \times \vec{E} \quad \text { (torque on a dipole) }
$$

Potential energy of a dipole $=$
Work done by the field on the dipole: QE

Distance between charges $=\mathrm{a}$

$$
U=-W=-\int_{90^{\circ}}^{\theta} \tau d \theta=\int_{90^{\circ}}^{\theta} p E \sin \theta d \theta . \quad U=-p E \cos \theta
$$

$$
U=-\vec{p} \cdot \vec{E} \quad \text { (potential energy of a dipole). }
$$

When is the potential energy largest?

Electric Flux: Planar Surface

- Given:
- planar surface, area A
- uniform field E
- E makes angle θ with NORMAL to plane
- Electric Flux: $\boldsymbol{\Phi}=\mathbf{E} \mathbf{A} \cos \boldsymbol{\theta}$
- Units: Nm²/C
- Visualize: "flow of water" through surface

- Electric Flux

A surface integral!

- CLOSED surfaces:
- define the vector dA as pointing OUTWARDS
- Inward E gives negative $\boldsymbol{\Phi}$
- Outward E gives positive $\boldsymbol{\Phi}$
$0=\int$ E.ta Electric Flux: Example
- Closed cylinder of length L , radius R
- Uniform E parallel to cylinder axis
- What is the total electric flux through surface of cylinder?
- Note that E is NORMAL to both bottom and top cap
- E is PARALLEL to curved surface everywhere
- So: $\Phi=\Phi_{1}+\Phi_{2}+\Phi_{3}$

$$
=\pi R^{2} E+0-\pi R^{2} E=0!
$$

- Physical interpretation: total "inflow" = total "outflow"!

$\Phi=\int E \cdot d A$

Electric Flux: Example

- Spherical surface of radius $\mathrm{R}=1 \mathrm{~m}$; E is RADIALLY INWARDS and has EQUAL magnitude of 10 N/C everywhere on surface
- What is the flux through the spherical surface?
$(\alpha)-(4 / 3) \pi \mathrm{R}^{2} \mathrm{E}=-13.33 \pi \mathrm{Nm}^{2} / \mathrm{C}$
(b) $4 \pi \mathrm{R}^{2} \mathrm{E}=+40 \pi \mathrm{Nm}^{2} / \mathrm{C}$
(c) $4 \pi R^{2} \mathrm{E}=-40 \pi \mathrm{Nm}^{2} / \mathrm{C}$

What could produce such a field?
What is the flux if the sphere is not centered
 on the charge?

Gauss' Law

- Consider any ARBITRARY

CLOSED surface S -- NOTE: this does NOT have to be a "real" physical object!

- The TOTAL ELECTRIC FLUX through S is proportional to the TOTAL CHARGE ENCLOSED!
- The results of a complicated integral is a very simple formula: it avoids long calculations!

$$
\Phi \equiv \oint_{\text {Surface }} \vec{E} \cdot d \vec{A}=\frac{q}{\varepsilon_{0}}
$$

(One of Maxwell's 4 equations)

Gauss' Law: Example

- Infinite plane with uniform charge density σ
- E is NORMAL to plane
- Construct Gaussian box as
shown

Applying Gauss' law $\frac{\mathrm{q}}{\varepsilon_{0}}=\Phi$, we have, $\frac{A \sigma^{(a)}}{\varepsilon_{0}}=2 A E$
Solving for the electric field, we get $E=\frac{\sigma}{2 \varepsilon_{0}}$

Two infinite planes

Gauss' Law: Example Cylindrical symmetry

- Charge of 10 C is uniformly spread over a line of length $L=1 \mathrm{~m}$.
- Use Gauss' Law to compute magnitude of E at a perpendicular distance of 1 mm from the center of the line.
- Approximate as infinitely long line -- E radiates outwards.

- Choose cylindrical surface of radius R, length L co-axial with line of charge.

Gauss' Law: cylindrical symmetry (cont)

- Approximate as infinitely long line -- E radiates outwards.
- Choose cylindrical surface of radius R , length L co-axial with line of charge.

$$
\Phi=|E| A=|E| 2 \pi R L
$$

$$
\begin{aligned}
\Phi=\frac{q}{\varepsilon_{0}}= & \frac{\lambda L}{\varepsilon_{0}} \\
& |E|=\frac{\lambda L}{2 \pi \varepsilon_{0} R L}=\frac{\lambda}{2 \pi \varepsilon_{0} R}=2 k \frac{\lambda}{R}
\end{aligned}
$$

Compare with last class!

$$
\begin{aligned}
E_{y}=k \lambda a \int_{-L / 2}^{L / 2} \frac{d x}{\left(a^{2}+x^{2}\right)^{3 / 2}} & =k \lambda a\left[\frac{x}{a^{2} \sqrt{x^{2}+a^{2}}}\right]_{-L / 2}^{L / 2} \\
& =\frac{2 k \lambda L}{a \sqrt{4 a^{2}+L^{2}}}
\end{aligned}
$$

if the line is infinitely long ($L \gg$ a)...

$$
E_{y}=\frac{2 k \lambda L}{a \sqrt{L^{2}}}=\frac{2 k \lambda}{a} \quad \frac{\|11\| 1 \|}{\|!\|!\|!} \stackrel{\vdots!}{\square!}
$$

Gauss' Law: Example Spherical symmetry

- Consider a POINT charge q \& pretend that you don't know Coulomb's Law

- Use Gauss' Law to compute the electric field at a distance r from the charge
- Use symmetry:
- draw a spherical surface of radius R centered around the charge q

- E has same magnitude anywhere on surface
- E normal to surface

$$
\Phi=|E| A=|E| 4 \pi r^{2}
$$

$\Phi=\frac{q}{\varepsilon_{0}}$
$|E|=\frac{\Phi}{A}=\frac{q / \varepsilon_{0}}{4 \pi r^{2}}=\frac{q}{4 \pi \varepsilon_{0} r^{2}}=\frac{k q}{r^{2}}$

Gauss' Law: Example

- A spherical conducting shell has an excess charge of +10 C .
- A point charge of -15 C is located at center of the sphere.
- Use Gauss' Law to calculate the charge on inner and outer surface of sphere
(a) Inner: +15 C ; outer: 0
(b) Inner: 0; outer: +10 C
(c) Inner: +15 C ; outer: -5 C

Gauss' Law: Example

- Inside a conductor, $\mathrm{E}=0$ under static equilibrium! Otherwise electrons would keep moving!
- Construct a Gaussian surface inside the metal as shown. (Does not have to be spherical!)
- Since $\mathrm{E}=0$ inside the metal, flux through this surface $=0$
- Gauss' Law says total charge
 enclosed $=0$
- Charge on inner surface $=+15 \mathrm{C}$

Since TOTAL charge on shell is +10 C ,
Charge on outer surface $=+10 \mathrm{C}-15 \mathrm{C}=-5 \mathrm{C}$!

Summary:

- Gauss' law: $\Phi=\int \mathbf{E} \cdot \mathbf{d A}$ provides a very direct way to compute the electric flux if we know the electric field.
- In situations with symmetry, knowing the flux allows us to compute the fields reasonably easily.

Electric field of a ring

Let's calculate the field produced by a ring of radius R with total charge $+Q$, on a point on the axis, at a distance z from the center.
A differential ring element will have charge dq, and will produce a field $\mathrm{d} \mathbf{E}$ with direction as shown in the figure. The magnitude of the field is $\mathrm{dE}=\mathrm{kdq} / \mathrm{r}^{2}$.
Notice that the distance r is the same for all elements!

By symmetry, we know the field will point up, so we will only need to integrate the component $\mathrm{dEy}=\mathrm{dE} \cos \theta=\left(\mathrm{k} \mathrm{dq} / \mathrm{r}^{2}\right)(\mathrm{z} / \mathrm{r})=\mathrm{k}\left(\mathrm{z} / \mathrm{r}^{3}\right) \mathrm{dq}$.
Notice that the angle θ is the same for all elements, it is not an integration variable!
We integrate over the ring to get the magnitude of the total field:
$\mathrm{E}=\int \mathrm{dEy}=\int \mathrm{k}\left(\mathrm{z} / \mathrm{r}^{3}\right) \mathrm{dq}=\mathrm{k}\left(\mathrm{z} / \mathrm{r}^{3}\right) \int \mathrm{dq}=\mathrm{kQz} / \mathrm{r}^{3}=\mathrm{kQz} /\left(\mathrm{R}^{2}+\mathrm{z}^{2}\right)^{3 / 2}$
No integral table needed!
What's the field very far from the ring?
If $\mathrm{z} \gg \mathrm{R}, \mathrm{E} \sim \mathrm{kQz} / \mathrm{z}^{3}=\mathrm{kQ} / \mathrm{z}^{2}$: of course, the field of a point charge Q .

Electric field of a disk

Let's calculate the field of a disk of radius R with charge Q , at a distance z on the axis above the disk.
First, we divide it in infinitesimal "rings", since we know the field produced by each ring.
Each ring has radius r and width dr: we will integrate on r, from 0 to R.
The charge per unit surface for the disk is $\sigma=Q /\left(\pi R^{2}\right)$, and the area of the ring is $\mathrm{dA}=2 \pi \mathrm{rdr}$, so the charge of the ring is $d q=\sigma d A=2 \pi \sigma r d r$.
The field of each ring points up, and has magnitude
$\mathrm{dE}=\mathrm{k} \mathrm{dq} \mathrm{z} /\left(\mathrm{r}^{2}+\mathrm{z}^{2}\right)^{3 / 2}=\left(1 / 4 \pi \varepsilon_{0}\right)(2 \pi \sigma \mathrm{rdr}) \mathrm{z} /\left(\mathrm{r}^{2}+\mathrm{z}^{2}\right)^{3 / 2}$

$$
=\left(\sigma z / 4 \varepsilon_{0}\right)(\mathrm{rdr}) /\left(\mathrm{r}^{2}+\mathrm{z}^{2}\right)^{3 / 2}
$$

The total field is then
$\mathrm{E}=\left(\sigma \mathrm{z} / 4 \varepsilon_{0}\right) \int(2 \mathrm{rdr}) /\left(\mathrm{r}^{2}+\mathrm{z}^{2}\right)^{3 / 2}=\left(\sigma \mathrm{z} / 4 \varepsilon_{0}\right)\left(-2 /\left(\mathrm{r}^{2}+\mathrm{z}^{2}\right)^{1 / 2}\right)_{0}{ }^{\mathrm{R}}$

$$
E=\frac{\sigma}{2 \epsilon_{0}}\left(1-\frac{z}{\sqrt{R^{2}+z^{2}}}\right)
$$

Electric field of a disk
 $$
E=\frac{\sigma}{2 \epsilon_{0}}\left(1-\frac{z}{\sqrt{R^{2}+z^{2}}}\right)
$$

If we are very far from the disk, $\mathrm{z} \gg \mathrm{R}, \mathrm{E} \sim 0$: of course, it gets vanishing small with distance. If we use

$$
\frac{z}{\sqrt{R^{2}+z^{2}}}=\frac{1}{\sqrt{1+(R / z)^{2}}} \sim 1-\frac{1}{2}(R / z)^{2}
$$

We get $\mathrm{E} \sim\left(\sigma / 4 \varepsilon_{0}\right)\left(\mathrm{R}^{2} / \mathrm{z}^{2}\right)=\left(\mathrm{Q} / \pi \mathrm{R}^{2}\right) /\left(4 \varepsilon_{0}\right)\left(\mathrm{R}^{2} / \mathrm{z}^{2}\right)=\mathrm{kQ} / \mathrm{z}^{2}$.
(Of course!)
If the disk is very large (or we are very close), $\mathrm{R} \gg \mathrm{z}$, and $\mathrm{E} \sim \sigma / 2 \varepsilon_{0}$
The field produced by any large charged surface is a uniform field, with magnitude $\sigma / 2 \varepsilon_{0}$.

