

Physics 2102

Introduction to Electricity, Magnetism and
 Optics

Summary of last lecture

- Electric field is a vector calculated the electric force on an imaginary 1C positive charge.
- Electric field lines start or end in electric charges.
- When fields are strong, electric field lines get closer.
- Electric field of a single charge is $|\mathrm{E}|=\mathrm{kq} / \mathrm{r}^{2}$
- The "dipole moment" vector \mathbf{p} has magnitude qa and direction from -ve to +ve charge.
- Far from a dipole, $|\mathrm{E}| \sim \mathrm{kp} / \mathrm{r}^{3}$

http://phet.colorado.edu/en/simulation/electric-hockey

Computing E of a continuous charge distribution

Thus far, we have only dealt with discrete, point charges. In general, a charged object has a "continuous" charge distributed on a line, a surface or a volume. How do we calculate the electric field produced by such an object?

- Approach: divide the continuous charge distribution into infinitesimally small elements
- Treat each element as a POINT charge \& compute its electric field
- Sum (integrate) over all elements
- Always look for symmetry to simplify life!

Charge Density

- Useful idea: charge density
- Line of charge: charge per unit length $=\lambda$
- Sheet of charge: charge per unit area $=\sigma$
- Volume of charge: charge per unit volume $=\rho$

$$
\lambda=\mathbf{Q} / \mathbf{L}
$$

```
\sigma=O/A
```


Example: Field on Bisector of Charged Rod

- Uniform line of charge +Q spread over length L
- What is the direction of the electric field at a point P on the perpendicular bisector?
(a) Field is 0 .
(b) Along +y
(c) Along $+x$
- Choose symmetrically located elements of length dx

- x components of E cancel

Example : Arc of Charge

- Figure shows a uniformly charged rod of charge -Q bent into a circular arc of radius R, centered at $(0,0)$.
- What is the direction of the electric field at the origin?

(a) Field is 0.
(b) Along +y
(c) Along -y
- Choose symmetric elements
- x-components cancel

Example --Line of Charge: Quantitative

- Uniform line of charge, length L , total charge Q
- Compute explicitly the magnitude of E at point P on perpendicular bisector
- Showed earlier that the net field at P is in the y direction -- let's now compute this!

Line Of Charge: Field on bisector

$$
E_{y}=k \lambda a \int_{-L / 2}^{L / 2} \frac{d x}{\left(a^{2}+x^{2}\right)^{3 / 2}}=k \lambda a\left[\frac{x}{a^{2} \sqrt{x^{2}+a^{2}}}\right]_{-L / 2}^{L / 2}=\frac{2 k \lambda L}{a \sqrt{4 a^{2}+L^{2}}}
$$

What is the field E very far away from the line $(\mathrm{L} \ll$ a) ?

$$
E_{y} \approx \frac{2 k \lambda L}{a \sqrt{4 a^{2}}}=\frac{2 k \lambda L}{2 a^{2}}=\frac{k Q}{a^{2}} \quad \begin{aligned}
& \text { Far away, any } \\
& \text { "localized" charge looks } \\
& \text { like a point charge }
\end{aligned}
$$

What is field E if the line is infinitely long ($\mathrm{L} \gg$ a) ?

$$
E_{y}=\frac{2 k \lambda L}{a \sqrt{L^{2}}}=\frac{2 k \lambda}{a}
$$

$\mathrm{Q}=\lambda \mathrm{L}$ is infinite! This is not a physical situation, it is an approximation for when we are very close to the charged line (and then it "looks" infinite!).

Arc of Charge

- Figure shows a uniformly charged rod of charge - \mathbf{Q} bent into a circular arc of radius R , centered at $(0,0)$.
- Compute the direction \&
 magnitude of E at the origin.

$$
\begin{gathered}
d E_{x}=d E \cos \theta=\frac{k d Q}{R^{2}} \cos \theta \\
E_{x}=\int_{0}^{\pi / 2} \frac{k(\lambda R d \theta) \cos \theta}{R^{2}}=\frac{k \lambda}{R} \int_{0}^{\pi / 2} \cos \theta d \theta \\
E_{x}=\frac{k \lambda}{R} \quad E_{y}=\frac{k \lambda}{R} \\
\hline E=\sqrt{2} \frac{k \lambda}{R} \\
\lambda=2 \mathbf{Q} /(\pi \mathbf{R})
\end{gathered}
$$

Electric field lines and forces

The drawings below represent electric field lines.
a) Draw vectors representing the electric force on an electron at point A , and on a proton at point B .
b) If the magnitude of the force on an electron at A in (a) is $1.5 \mu \mathrm{~N}$, what is the electric field at point B in each case?

Electric charges and fields

We work with two different kinds of problems, easily confused:

- Given certain electric charges, we calculate the electric field produced by those charges.

Example: we calculated the electric field produced by the two charges in a dipole :

- Given an electric field, we calculate the forces applied by this electric field on charges that come into the field.

Example: forces on a single charge
 when immersed in the field of a dipole:
(another example: force on a dipole when immersed in a uniform field)

Electric Dipole in a Uniform Field

- Net force on dipole $=0$; center of mass stays where it is.
- Net TORQUE τ : INTO page. Dipole rotates to line up in direction of E.
- $|\tau|=2(\mathrm{QE})(\mathbf{a} / 2)(\sin \theta)$
$=(\mathrm{Qa})(\mathrm{E}) \sin \theta$
$=|\mathbf{p}| \mathrm{E} \sin \theta$
$=|\mathbf{p x E}|$
- The dipole tends to "align" itself with the field lines.

Distance between charges $=\mathrm{a}$

- What happens if the field is NOT UNIFORM??

