

Physics 2102

Exam review Inductors, EM oscillations

Exam review

Q1: 75.7

P1: 61.6

Q2: 67.2

Q3: 79.2

P2: 58.2

$$B = 0.64 - 4.0 t^2,$$

P3:52.2

Inductors

- Inductance definition: L=N $\Phi_{\rm B}/I$
- Solenoid inductance: $L=\mu_0 n^2 A l$
- Induced emf (voltage) across an inductor is E=-L di/dt
- In an RL circuit, we can "charge" the inductor with a battery until there is a constant current, or "discharge" the inductor through the resistor. Time constant is L/R.

$$i = \frac{\mathcal{E}}{R} \left(1 - e^{-t/\tau_L} \right) \quad \text{(rise of current)}. \qquad i = i_0 e^{-t/\tau_L} \quad \text{(decay of current)}.$$

- An inductor stores magnetic potential energy: $U_B = Li^2/2$
- Energy density stored in a magnetic field is $u_B = B^2/2\mu_0$

EM oscillations

- An LC combination produces an electrical $q=Q\cos s$ oscillator, the natural frequency of oscillator $i=-\omega Q\sin s$
- Total energy in circuit is conserved: switches between energy stored in capacitor (electric energy) and in inductor (magnetic energy).
- If a resistor is included in the circuit, the total energy decays (is dissipated by R).

(a)

