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1 Introduction

These notes are intended to help clarify some issues about using the calibration
for LIGO data. These issues came up in conversations with different people,
so I am addressing some particular concerns; however I am NOT intending to
make these notes a comprehensive discussion of the topic.

2 The DARM loop

I will follow closely the nice presentation that Peter Shawhan made at the
March’02 LSC meeting: An Overview of LIGO Length Sensing and Control,
G020064 (the document can be looked up in the LIGO-LSC web site). In
his notation, we have a sensing function C(f), a servo gain function G(f) and
an acuation function A(f). Each of these functions is complex, and has units
that depend on the details of the definitions; typically the sensing function
is in counts/m (for AS Q response to a change in distance), the servo gain
function is in counts/counts (DARM CTRL/AS Q), and the actuation function
is in m/count. The frequency dependence of the sensing function is usually
just a “cavity pole” from the Fabry-Perot cavity in the arms; the shape of the
actuation function is also usually simple, like a pendulum transfer function.
These functions are measured, and does not change often, except by overall
gains. The shape of these functions is similar in all detectors, although the
overall gain of the functions may be different. The servo gain function is usually
complicated, and is different in every detector, but is well known, since it is a
software code that produces the output (DARM CTRL) from the input (AS Q).
The overall gain of the servo function is constant and the overall gain of the
actuation function should be constant; however the gain of the sensing function
is dependent of the power buildup in the FP cavities, which in turn depends on
alignment: this gain drifts within a locked segment, and can change significantly
from segment to segment.

The open loop gain, sometimes just called loop gain, is the product of all
three functions, H=GAC (the open loop gain is more often called “G”, but
since I am following Peter’s notation and he used G for the servo function,
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Figure 1: Length servo loop, from Peter Shawhan’s presentation G020064

I used the next letter available). The open loop gain is dimensionless. The
frequency at which the magnitude of the open loop gain is one is called the
“unity gain frequency”, or ugf. The frequency band where the magnitude of H
is high (typically low frequencies) is called the “servo band”. In LLO, the ugf
is about 200 Hz, but of course it changes when the gain goes up or down with
alignment.

The math of the response of different signals to excitations in different places
is simple, and is always related to the open loop gain. For example, given an
externally induced change in distance Xext (by seismic noise or a gravity wave):

control length: xc = A(f)DARM CTRL
control signal: DARM CTRL = G(f)AS Q
error signal: AS Q = C(f)xr

residual length: xr = Xext − xc

= Xext −A(f)DARM CTRL
= Xext −A(f)G(f)AS Q
= Xext −A(f)G(f)C(f)xr

From going around the loop, we deduce

xr = Xext
1

1 + H(f)

xc = Xext
H(f)

1 + H(f)

AS Q = Xext
C(f)

1 + H(f)
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DARM CTRL = Xext
G(f)C(f)
1 + H(f)

= Xexc
1

A(f)
H(f)

1 + H(f)

At low frequencies where the gain is very high, H(f) À 1, we see that that
the residual length is much smaller than the exciting motion xr ¿ Xexc, while
the control length is very similar to the exciting motion, xc ∼ Xext (that’s how
the motion is cancelled, of course). At high frequencies, where the gain is low,
H ¿ 1, the opposite is true: the residual length is close to the exciting length,
xr ∼ Xexc, while the control length is much smaller, xc ¿ Xexc.

3 Notation for poles and zeros

A detail worth mentioning, since it is cause of confusion, is that often we think
of these transfer functions as functions of frequency, as representing the response
of one point to another driven with a sine wave. However, when designing servo
filters or when plotting them in Matlab and other control system tools, it is
more useful to work in the Laplace domain, where the frequency in the Fourier
domain is related to the Laplace variable through s = iω = 2iπf . Yet a different
convention is the one used in DTT... all this means that when giving a list of
poles, zeros, and gains for a transfer function, we need know exactly what space
we are working in.

Given x(t), the formulas for Fourier and Laplace transform are:

x(ω) =
∫ +∞

0

x(t)e−iωtdt

x(s) =
∫ +∞

0

x(t)e−stdt

In general, we think of the Fourier frequency ω = 2πf as a real variable (since
we assume it is the setting in a signal generator), while the Laplace variable s
is complex, and often written as s = σ + iω, so that x(ω) = x(s)|σ=0.

We usually deal with transfer functions, so that if y(t) is obtained by a
linear, causal operator on x(t), then y(f) = T (f)x(f), and y(s) = T (s)x(s).
Notice that while the Fourier transforms of x(t) or y(t) change in amplitude if
you want to use ω in radians/sec or f = ω/2π in Hertz, the transform function
does not: T (ω) = T (f) (this is not true for the signals themselves:x(ω) 6= x(f).
In general, the Fourier transform of a time series is a complicated function (not
always well defined), but the Fourier representation of transfer functions are
usually (but not always) simple polynomials. This is where the “zero,pole,gain”
notation becomes very handy. In general, if we describe a transfer function in
the Laplace domain with poles pi, i = 1..Np, zeros zi = i = 1...Nz and gain k,
then we understand that the polynomial is

T (s) = K
ΠNz

1 (s− zi)

ΠNp

1 (s− pi)
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Figure 2: Impulse response obtained in matlab for zpk(1,2,3)

If the transfer function applies to signals that have a Laplace transform
(that is, causal and integrable), it means the poles pi are all in the left hand
plane: they have a negative real part. It also requires that if poles are complex,
they appear in conjugate pairs. In the Fourier domain, the “left hand side” rule
means, roughly, that exponentials (described as complex poles ωp = ω0(1+i/Q),
decay exponentially instead of growing unbounded.

Most control systems design work in the Laplace domain, because intuition
is developed for these rules, and make trouble-spotting easier. For example, in
Matlab, if you type

>>zpk(1,2,3)

you get

Zero/pole/gain:
3 (s-1)
-------
(s-2)

and if you type

impulse(zpk(1,2,3))

you get the plot in Figure 2, showing an unstable filter, since we have a pole in
the “right hand side”.

When one converts from Laplace domain to Fourier domain, we just remem-
ber s = iω and convert poles and zeros: pi(in FD)=−ipi (in LD), so:

T (ω) = K
ΠNz

1 (ω − zi)

ΠNp

1 (ω − pi)
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We also usually list poles and zeros in Hertz, and then write the above
polynomial for T (f) using ω = 2πf , of course.

A yet different notation that makes easier to get the plot of the transfer
function in your head without using Matlab or anything else, is to use scaled
variables, so that the “gain” for the polynomial is in fact the “DC gain”1. This
is the notation used by Daniel Sigg in his documents about the plant transfer
functions, and by DTT, and it is a mixed notation with Laplace variables in
Hertz, with a change in sign (sigh!):

T (s) = KDC
ΠNz

1 (1 + s/2πzi)

ΠNp

1 (1 + s/2πpi)

In this notation, for example, a pendulum pole pair at 0.76Hz with a Q of
10 would be .076± i0.76 (and confuse everybody who doesn’t know the notation
because it is on the right hand side...).

4 A real example

To show how the previous concepts work together, I put here how we use AS Q
and DARM CTRL to get residual and control lengths using simple DTT cali-
brations.

Often, we plot the residual length and the control length, using AS Q and
DARM CTRL with a simple cavity pole calibration for AS Q and a pendulum
calibration for DARM CTRL: we are plotting xr = ASQ/C = 1/(1 + H) and
xc = ADARMCTRL = H/1(1 + H). This is shown in Fig3, taken at LLO
during S1.

The calibration used in Fig3 for AS Q is 1/C(f) = 3 × 10−15m/ct/(1 +
i88Hz/f) (the cavity pole is at 88 Hz), and for DARM CTRL is A(f) = 1.72×
10−9m/ct/((1−0.76Hz/f)2 +0.12) (the pendulum is at 0.76 Hz, and we assume
a Q=10). This calibration would be entered in DTT as (k=3e-15, z=88) to
convert AS Q into residual length, and (k=1.7e-9, p=0.076 0.76) to convert
DARM CTRL into control length.

Notice the high gain at low frequencies, where the input motion is suppressed
by 10 orders of magnitude, and the unity gain frequency around 200 Hz where
the two curves (residual and control lengths) cross each other.

The envelope of the residual and control lengths (the larger of the two)
is an approximate measure of the exciting motion, except near the unity gain
frequency. If |H| ∼ 1, then the magnitude of 1/(1+H) depends critically on the
phase of H. In particular, if the phase is close to 180 degrees, 1/(1+H) gets very

1This only works if we don’t have any pole at zero frequency (which would have infinite
gain at zero frequency). We do sometimes use poles at zero, these are simple integrators and
are useful. I think there are no poles at zero in any of the transfer functions needed for the
DARM loop.
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large: this is called a gain peaking. Both AS Q and DARM CTRL will get have
“bumps” near the unity gain, but the actual exciting motion is not as large as
these plots would indicate. The difference in degrees between the phase of H(f)
at the ugf and 180 degrees is called phase margin, and a loathy goal is to have it
near 45 degrees (the best phase margin is 90 degrees). If the phase margin is 45
degrees at the ugf, then |1/(1+H)| = 1.3, so both A DARM CTRL and AS Q/C
(which have equal magnitude at the ugf) overestimate the exciting motion by
30% (that is, the noise is even better than the one plotted in the figure). If the
phase margin is 90 degrees, the exciting motion is underestimated by 30%.

In general, loop shaping used for G(f) uses real poles and zeros for simplicity
and stability. However, when using sharper low or high pass filters (Butterworth,
Chebyshev, etc), they have complex poles and zeros. Notches (like the ones
used for violin modes), and high Q pendulums, are also necessarily complex,
as are often used “resonant gain stages”. If we don’t care much about phase,
we sometimes replace a pendulum pole pair (complex) with two real poles at
the pendulum frequency: this trick allows for simplicity in reporting transfer
functions, and is reasonable faithful to magnitude and phase as long as we are
far from the pendulum frequency itself.

5 Calibration

As explained in “The Mechanics of an Engineering Run Amplitude Calibration”,
LIGO-G020067, the calibration procedure involves two steps: first, calibrating
the response of a drive signal on the ETM mirrors; and second, a swept sine
measurement of the response of AS Q to that calibrated drive signal. In the
language of this note, the first step is measuring the actuation function A(f),
while the second step is measuring the function SS = AC/(1+H). The response
function we need is that of AS Q to a gravity wave excitation Xexc = Lh, or
T = C/(1 + H) = SS/A, so we can get it from the two measured functions. In
order to get a formula for the transfer function, however, rather than a table of
measured points, two different methods are often used:

• A fit is done to the transfer function SS, in some chosen frequency domain
(within the measured range, of course), assuming some maximum num-
ber of poles and zeros, and limiting the numbers to real poles and zeros
for simplicity. The frequency dependence of A is known, and its gain is
measured, so a functional form for T = SS/A is obtained.

• Since the frequency-dependence of the functions A,C and G is well known,
the gain of A is measured, and the gain of G is exactly known, the swept
sine is compared to the the expected function, and used to get the single
missing parameter, the gain of C. We than have a functional expression
valid at all frequencies for each of A,C and G, and therefore for T =
C/(1 + H). This function is necessarily complicated, since it has all the
well known details of G, but it can be simplified in a given frequency range
if details outside the range are not needed.
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Figure 4: Calibration lines inserted in the DARM loop.

In both cases, the calibration is valid for the time at which it was done. The
gain of A is not expected (or observed) to change, but the gain of C changes
often (and continuously) due to alignment in the cavities. In order to use the
calibration done and apply the change in gain, we need to do two things: have
calibration lines in the spectrum; and do the math to get a new transfer function.

Two calibration lines are inserted, added to DARM CTRL, one at a low
frequency (∼50 Hz), in the servo band, and another at a high frequency (∼900
Hz), outside the servo band. Let us call the added signals, in counts, Li. I
have drawn the servo diagram again in Fig4. For both lines (or any other signal
or noise added to DARM CTRL), the observed amplitude in DARM CTRL is
L∗H/(1+H), and in AS Q is L∗AC/(1+H). If the gain is high (low frequency
line), then DARM CTRL is approx L, and AS Q is approx L/G. If the gain is
low (high freq line), then DARM CTRL is LACG, and AS Q is LAC. So, from
the two lines we get enough information to get the overall gain of the functions
AC and G. In practice, we use the change in the high frequency line to scale C
with it.

The lines give us information on the overall gain change of the open loop
gain H=ACG. With this, we can scale the response function T = C/(1 + H),
but it is not an overall gain change in the transfer function. If a transfer
function T0 was obtained at some time when the calibration was known, and
then the gain in the cavity is observed to change by a factor α, then H = αH0

but T = αC0/(1 + αH0), so there isn’t a simple relationship between T and T0.
Within the servo band, T ∼ T0, and outside the servo band, T ∼ αT0. However,

8



the “servo bands” have also changed, since a change in the overall magnitude
of H changes the position of the unity gain frequency.

6 LLO servo

Rana Adhikari has created a nice Matlab/Simulink model for the LLO DARM
loop, collecting all known, measured and inferred information about the system,
shown in Fig.5. Notice the presence of a known time delay in the ADC/DAC
(analog-to-digital and digital-to-analogconversion) system, of about 50 µseconds
each. This is not a linear system, but can be linearized in the frequency range
used when plotting transfer functions.

The open loop gain obtained from a linearized version of this model between
0.1Hz and 10kHz is shown in Fig.6. A linearization in the Laplace domain
(Matlab domain, we should probably call) results in a zero-pole-gain model for
the open loop gain of the system with 29 poles and 24 zeros, shown in the
table below. Within the frequency band of interest, say 50 Hz to 2kHz (?), the
functions are simpler, as shown in the zoomed graphics of Fig.6.

Zeros (in Hertz) Poles (in Hertz)
1.4154e-010 ± 4.9451e+004i -4.0370e+002 ± 7.8819e+003i

-7.0590e-011 ± 3.7713e+004i -4.8090e+002 ± 7.1772e+003i
1.1387e-010 ± 1.8119e+004i -1.3308e+003 ± 7.0884e+003i

-1.3042e-010 ± 1.6402e+004i -2.4748e+003 ± 5.2030e+003i
3.8341e-011 ± 1.2817e+004i -5.0000e+003 ± 1.6461e-003i

-9.1882e-012 ± 1.1290e+004i -1.3578e+003 ± 3.1431e+003i
3.1831e+003 ± 1.8378e+003i -3.4361e+003 ± 1.9708e+003i

-1.0000e+003 -3.1831e+003 ± 1.8378e+003i
-999.9998 -1.4142e+003 ± 1.4142e+003i

-4.7801e-013 ± 3.4360e+002i -7.0711e+002 ± 7.0711e+002i
-100.0000 -1.7180e+000 ± 3.4360e+002i

-20.0954 ± 40.6673i -87.3000
-12.0572 ± 24.4004i -2.0095 ± 4.0667i

-10.0000 -0.0375 ± 0.7491i
-4.5418e-013 ± 3.5564e-006i

The DC gain is 2.3e19 counts/m. Notice that all the poles have a negative
real part, as they should for a stable system. We can recognize the pendulum
poles (−0.0375 ± 0.7491i Hz) and the cavity pole at -87.3 Hz. Everything else
would be included in the “servo gain” function G, and although complicated, is
well known.

At any given frequency, one can approximate all poles and zeros lower than
that frequency (|s| >> |zi|, |pi|) by a power law: ΠNz(s)

1 (s−zi)/ΠNp(s)
1 (s−pi) ∼

sNz(s)−Np(s); and all poles and zeros higher than that frequency (|s| >> |zi|, |pi|)
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Figure 5: Rana Adhikari’s Simulink model for the LLO DARM loop.
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Figure 6: Open loop gain obtained from Rana’s Simulink model.
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by a constant: ΠNz(s)
1 (s− zi)/ΠNp(s)

1 (s−pi) ∼ ΠNz(s)
1 (−zi)/ΠNp(s)

1 (−pi). Thus,
if we arbitrarily decide that we want a simpler expression for the open loop, valid
for frequencies between 100 Hz and 2kHz, for example, then the list of poles
and zeros can be shortened. Rounding up some numerics, a new approximate
list of poles and zeros would be

Zeros (in Hertz) Poles (in Hertz)
-1.0000e+003 -1.4142e+003 ± 1.4142e+003i
-1.0000e+003 -7.0711e+002 ± 7.0711e+002i

± 3.4360e+002i -1.7180e+000 ± 3.4360e+002i
-100.0000 -87.3000

-20.0954 ± 40.6673i 0,0,0

The three poles at zero Hz (which could be at any frequency below the fre-
quency range chosen) produce the appropriate power law due to the poles and
zeros at low frequencies that were replaced by a power law. The fit to the mag-
nitude is very reasonable, but the phase is not as close, as shown in comparing
blue and green curves in Figure7. The fit to the phase can be improved at
the low frequency end by changing the poles at zero Hz to higher frequencies
but still below the range chosen, as shown in the red curve in Figure7, and at
high frequencies by introducing zeros at frequencies above the frequency range.
However, it is clear that the best fit would be obtained by using the known and
modelled parameters, even if they are outside the frequency range of interest.
The low frequency approximations are shown for the open loop gain, but they
are easily translated and produce similar (and related) effects in the response
function, of course.

Another simplification often tried for calibration purposes is using real poles
and zeros. In our shortened list of poles and zeros, we see complex poles and
zeros near 344 Hz, which are used to produce the notch at the violin modes.
These cannot be approximated by real poles and zeros, but if we neglect the
effect of the notch, and replace the in-band poles and zeros by their real ones, we
get a short list: poles at -2000,-2000,-87.3,15,15,15Hz, and zeros at -100,-46,-46
Hz produce the cyan curve in Figure7. This is not a good approximation for
the magnitude or phase, but of course can be improved fitting both to a larger
number of poles and zeros and a more appropriate fitting routine.

With the model in hand, we can see the effect of different gains in the cal-
ibration function used for AS Q. Three different gains in the sensing function
C(f) were used to generate the calibration functions in figure8. We can rec-
ognize the unity gain “bumps”, as well as an approximate linear change in the
magnitude of the calibration at high frequencies. The change in phase is not so
easily approximated, nor is the change in magnitude near the ugf.
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7 Conclusions

I hope this note helps to clarify some initial confusion, probably due to just
jargon in different fields. However, a few items should be mentioned:

• We expect the interferometer to change its open loop gain by a constant
factor (due to alignment, for example). This effect can be measured by
calibration lines. However, the response function will not change by a
constant factor.

• A fit with real poles and zeros to the open loop gain, or to the response
function, is no better or worse than an often longer list of complex poles
or zeros obtained from a model of the interferometer and a known se-
ries of hardware and software modules. However, changes are more easily
tracked, and the effect of different noise sources can be more easily under-
stood with a model. Maybe more importantly, if the model is appropriate,
only one parameter (or two, if we observe changes in actuation forces) is
left to be fitted to the status of the interferometer at any given instant.

• Rana Adhikari, Mike Landry and others from the “Calibration Team” have
both been dutifully producing response curves for the LIGO engineering
runs and the first Science run. This note does not in any way replaces
their work, it only makes their product even more important. Hopefully,
more people will now be better able to use their results.
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