Macroscopic limit of the microscopic SU(3)⊗SO(3) integrity basis interaction

Yosef Leibflether and J. P. Draayer
Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70899-4001

(Received 15 October 1985)

It is shown that a fourth degree $SU(3)$⊗$SO(3)$ integrity basis interaction, encountered in both fermion and boson theories of nuclear structure, maps onto an axially symmetric rotor Hamiltonian for a special linear combination of the third (LQQ) and fourth (LQQQ) order scalar operators.

A long-time goal of nuclear physics has been to provide a macroscopic shell-model interpretation of nuclear rotational phenomena that are as simply and ably described within the framework of the Bohr-Mottelson picture of collective motion. 1 Elliott made a giant step forward in that direction when he proposed the now acclaimed $SU(3)$ model.2 The latter is microscopic in the sense that the angular momentum $(L\mu,\mu=0,\pm 1)$ and quadrupole $(Q_{\mu},\mu=0,\pm 1,\pm 2)$ operators that generate $SU(3)$ are given in terms of individual nucleon coordinate and momentum variables. Here that microscopic-macroscopic link is reinforced by a direct demonstration of the equivalence of the rotational model Hamiltonian and an $SU(3)$⊗$SO(3)$ integrity basis interaction.3 It is shown that for a special linear combination of the third (LQQ) and fourth (LQQQQ) order $SU(3)$ noninvariant $SO(3)$ scalar, the integrity basis (IR) interaction reduces to the symmetric rotor (SR) Hamiltonian. In a subsequent paper the connection of the integrity basis form to a truly microscopic interaction will be presented. The integrity basis technology therefore yields at a fundamental (operator) level the sought-after microscopic interpretation of nuclear rotational phenomena.

The $SU(3)$⊗$SO(3)$ integrity basis consists of six operators: $[C_1\hat{R}x_1, C_2\hat{R}x_2, x_1x_2, x_1x_3, x_2x_3, x_1x_2x_3]$. The operators C_1 and C_2 are the second and third order invariants of $SU(3)$; L^2 is the invariant of $SO(3)$, and x_1, x_2, x_3 are independent third, fourth, and sixth order $SU(3)$ noninvariant $SO(3)$ scalar operators.4 Here an invariant means a group Casimir invariant operator, and a scalar operator is one that transforms like a multiple of the identity under $SO(3)$. So invariants are scalars but the opposite is not necessarily so. The integrity basis principle ensures that all $SU(3)$ scalars in $SU(3)$ can be written as polynomial functions of these six basic ones. It follows that within a single representation of $SU(3)$, $H_{\text{SU(3)}} = aL^2 + a_1x_1 + a_2x_2 + a_3x_3$. This is the form of the most general interaction of degree four.5 Here x_1, x_2, x_3 are $L=Q$ and $X_{\pm 1}, X=(\pm 1, \pm 1)$, where $X_{\pm 1}$ is $X_{\pm 1}(L)\bigcirc(Q,L)$, and the \bigcirc denotes the direct product of L and Q. The simple Hamiltonians have been used to reproduce spectra and electromagnetic transition rates data of the 132-shell nuclei ^{238}U as well as that of several rare earth and actinide species.6–8 Whereas this was done within the context of a fermion dynamics, it has also now been applied to Gd and Er isotopes with the $SU(3)$⊗$SO(3)$ algebra that of the rotational limit of the interacting boson model.9 In all cases, fermion and or boson, (1) gives a good representation of the data.

Consider the operator

\[Y = X_1 + X_3. \]

It will be shown that for a special value of the parameter λ, $Y = aL^2 + \beta L^2$. That is, there is a value of λ for which the off-diagonal matrix elements of Y vanish and the diagonal matrix elements reduce to a linear function of L and L^2. It follows that for $\lambda = \lambda_0$ the integrity basis Hamiltonian can be mapped onto the Hamiltonian of a symmetric rotor,

\[H_{\text{SU(3)}} - H_{\text{SU(3)}} = \frac{1}{2}L^2 + \frac{1}{2}\lambda_0(L+1)(L+2). \]

(4)

In (4), J and I are the moments of inertia about axes perpendicular and parallel, respectively, to the principal symmetry axis of the rotor. Thus this correspondence is strictly true only in a $2\lambda > \lambda_0 > 1$ limit, it has been found to be ready so for representations that enter far near and actinide applications using the $SU(3)$ shell model. It is true to a lesser degree for Elliott model α-shell applications since the $SU(3)$ representations here correspond to intrinsic states of smaller deformation. As the results depend only on the $SU(3)$⊗$SO(3)$ structure, they extend to the rotational limit of the interacting boson model $[U(1)\otimes SU(3)\otimes SO(3)]$ and the compact group substructure of the microscopic collective model $[Sp(3, \mathbb{R})\otimes SU(3)\otimes SO(3)]$.9,10

To illustrate the fact that there is a value of λ for which Y is nearly diagonal, we introduce a standard statistical spectroscopy measure,1 $\Delta(W) = \frac{1}{2} \sum_{i \neq j} |d_{ij}(L)(2L+1) - (\pi)^{1/2}$. Here $d_{ij}(L)$ measures the contribution from the off-diagonal matrix elements to the spread in the eigenvalues of the Lth submatrix and $\pi L^2 + a_1x_1 + a_2x_2 + a_3x_3$ is the variance of the Lth submatrix which includes, in addition to aL^2, a contribution $c(L)$ from the displacement of diagonal elements about the centroid value $c(L)$. The term $(\pi L^2 + a_1x_1 + a_2x_2 + a_3x_3)$ is a contribution to the variance of the Y in the full (λ_0) space from the displacement of the L-subspace centroids about the average value c. The factor $\Delta(W)$ is just $(\pi^2/2) - 1$ times the multiplicity of L in (λ_0), hence $\Delta(W) = 0$ for $\Delta = 0$. The eigenvalues of $Y_{\text{SU(3)}}$ are diagonal and $\Delta = 0$ when the diagonal values are all eigenvalues.

In Fig. 1, Δ as defined by (5) is plotted as a function of X.
FIG. 1. A plot of the measure Δ vs l for the $(\lambda_{k}) = (30, 8)$ representation of SU(3). The minimum occurs for $x = 2.69 \times 10^{-2}$. For larger λ the resonant state is narrower and the minimum deeper. For $x = 0$ the $l \Delta$ is a measure of the off-diagonality of the $J_{l}(x)$ operator.

for the $(\lambda_{k}) = (30, 8)$ representation of SU(3). The results shown for $l = \lambda + \mu$, the maximum allowed value for L. The (30,8) representation is the leading one in a pseudo-SU(3) description of ^{161}Er. The sharp resonant behavior shown is typical of all cases studied. For smaller λ the resonant region is broader and less deep while for λ larger it is narrower and the minimum is even smaller. x_{min} value, which is 2.69×10^{-2} for the (30,8) representation, was found to be insensitive to the choice of N. The point labeled Ω is for $y = 0$ when Y reduces to the Ω operator of Moshtinsky. Note that Ω yields high off-diagonal matrices as does J_{l} which is obtained for $x = \infty$. A surprising feature of the Δ vs x curve is the sharpness of the dip and the smallness of Δ for $x = x_{\text{min}}$. Attempts to refine the Δ measure by restricting the sum in (5) to lower L states ($N < \lambda + \mu$) led to no significant changes.

In addition to demonstrating the diagonality of H_{Ω} for $x = x_{\text{min}}$, it is necessary to show that each J_{l}^{Ω} is a linear function of L^{2} and K^{2}. This is shown in Fig. 2 for the $(\lambda_{k}) = (30, 8)$ representation. The J_{l} bands are all very nearly linear with slopes that depend only weakly upon the value of K. Note that there is a pronounced odd-even effect; for a given $K = 0$ the even-L values lie above the odd-L values. In Table I the values of a are given for each K band together with deviations from the average value which is $a = 7.83$. The K-band intercepts are also given in Table I and yield for β an average value of 109.4 with uncertainty ± 3.8. For larger λ the uncertainty in β is less and the linearity of each band greater, and, of course, the opposite is so for λ smaller.

In general, one expects x_{min} and the a and β values to be a function of the SU(3) representation labels λ and μ. In fact, using simple size arguments $L(L+1) - L(Q) - (2\lambda + \mu + 1)$ it is easy to show that $x_{\text{min}} = - (2\lambda + \mu + 1)^{2}$ for the off-diagonal cancellation to occur and to be K and L independent. Analytic forms for a and β are not so easily derived. A discussion of this matter will be part of a longer paper on the same subject. For the present it should be clear that gives $(\lambda_{k}),$ which dictate the x_{min}, a, β values, and the required inertial parameters l and L_{0}, one can determine a, b, and c of (5).

\[a = \frac{1}{2} - \alpha b = \left[1 + \frac{1}{2} \sqrt{1 - 4 \alpha} \right] \left(1 - \frac{\beta}{2} \right) \left(1 - \frac{\alpha}{2} \right). \]

The parameter d multiplying L^{2} in H_{Ω} would, of course, be determined if the centrifugal stretching or anisotropic correction were included in H_{Ω}. With the above values one has that $H_{\Omega} = H_{\text{ns}}$. Work leading to the results presented above was stimulated by the realization that the coefficient a^{2} of L^{2} in H_{Ω} as

<table>
<thead>
<tr>
<th>Band</th>
<th>a</th>
<th>β</th>
<th>Intercept</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-8.22</td>
<td>109.4</td>
<td>0.05</td>
</tr>
<tr>
<td>2a</td>
<td>-6.56</td>
<td>109.4</td>
<td>0.03</td>
</tr>
<tr>
<td>4a</td>
<td>-5.50</td>
<td>109.4</td>
<td>0.02</td>
</tr>
<tr>
<td>6a</td>
<td>-4.61</td>
<td>109.4</td>
<td>0.16</td>
</tr>
<tr>
<td>8a</td>
<td>-3.90</td>
<td>109.4</td>
<td>0.07</td>
</tr>
<tr>
<td>10a</td>
<td>-3.18</td>
<td>109.4</td>
<td>0.20</td>
</tr>
<tr>
<td>12a</td>
<td>-2.59</td>
<td>109.4</td>
<td>0.14</td>
</tr>
</tbody>
</table>

TABLE 1. Slopes a for K bands of the $(\lambda_{k}) = (30, 8)$ representation of SU(3). Uncertainties are also given and values for the intercepts. From the latter the value for β was determined to be 109.4 ± 3.8. The average value for a is -7.83.
determined by a best nonlinear least-squares fit to the ground and gamma band energies of 168Er is considerably greater than the 1/21 value of the Hartree theory, $a = 26.4$ keV versus 17/2 = 11.3 keV. The main difference it now uses to be the $-\alpha$ term in the expression for a in (6). Because of $-\alpha$ is negative and $\lambda (J=0)$ is positive, the $-\alpha$ term contributes an additional 13.2 keV which gives a value of 26.4 keV for the parameter a. The best-fit value for a is 2.59×10^{-3} as compared to 2.69×10^{-3} for $\lambda (J=0)$.

One additional fact bears mentioning. Rauh was apparently the first to study the SU(3)⊗SU(3) structure in depth. His objective was to find a canonical resolution of the state-labeling problem; that is, to construct an operator with simple eigenvalues that would distinguish between multiple occurrences of a given λ. A representation ($\lambda \rho$)

This work was supported in part by the National Science Foundation.