Speaker: Ying wun Yvonne Ng
Advisors: Jaehoon Yu, Seongtae Park, Andy White
University of Texas at Arlington
19th January 2014
Conference for Undergraduate Women in Physics 2014
Physics topics in the International Linear Collider (ILC) requires detectors for high precision jet energy measurements.

The Gas Electron Multiplier (GEM) is a good candidate as an active gap detector for the calorimeter by the particle flow approach (PFA). (Yu)
Stands for Gas Electron Multiplier

Next Generation Micro-strip Detector Technology

Merit:

- Lower voltage is needed
- Lower chance of discharge/sparks that may damage the electronics
- Excellent Resolution.

Possible application:

- Particle and radiation detector in ILC and LHC, medical Diagnostics and Portal Imaging.
- Intensifier for CCD camera
- X-ray Polarimeter to study polarization of supernovas and pulsars

8 keV absorption radiography of a small mammal. The horizontal image is 6 cm.

A cosmic ray passes through chamber it ionizes ArCO2 mixture in the chamber. Ionized electrons travel down by the electric field (drift region: 1.3e+4 V/m), they pass through holes in the 2 layers of GEM foils with a much higher electric field (7e+6 V/m). The high electric field cause a cascade of electron to be ionized (Multiplication). The multiplied electrons is read out at the anode board.

Gain = \# of electrons read out on the anode / \# of electrons ionized in the drift region

The cross section of a GEM detector shows the structure: Window, Drift Region, Transfer Region, Induction Region, GEM Foils, and Readout Strip. The Ar:CO2 mixture ratio is 80:20.

The image of a standard GEM foil shows regular pierced bi-conical holes: Diameter of the holes: D(cu):85µm; D(polyimide):55µm
Dr. Andy White proposed to have GEM as an active element of DHCAL in 2002. The group has been working on the GEM project since then.

ArCO2 gas Supply
- Ar: CO2 -> 80:20

High Voltage Supply
- Across each GEM chamber (1900V)

Low Voltage supply
- For the readout electronics (5-6V)

2 scintillator
- Sandwiching the GEM chambers
- Work as a Hodoscope
- The Kpix system only read out when both scintillators detect a signal -> Less stress on the electronics

Kpix Readout system
- System that reads out the signal from GEM to the computer
- System is able to read a magnitude of signal -> can measure effective gain and efficiency of the GEM chamber

4 GEM chambers
- Specifications:
 - Active area: 280x280 mm^2
 - Active gas room: 350x350x6 mm^3
 - 64 readout channels (1x1 cm^2)

Dimensions and Specifications
- GEM foil: 310x310 mm
- Active area: 280x280 mm^2
- Active gas room: 350x350x6 mm^3
- 64 readout channels (1x1 cm^2)
- **Effective Gain** -> An Important index of how efficient GEM is.
- **Stability** of GEM chamber over a long period of time
 - The more stable it is the more reliable of an candidate GEM is as a gap detector
 - Investigation of the long term behavior of GEM is therefore important
Gain = \# of Electrons read out on the anode board/\# of electrons ionized in the drift region

\# of Electrons read out on the anode board = MPV/Charge of an electron

If the \# of electron ionized at the drift region is constant, then the MPV value of the charge distribution plot is a good analogy to the effective gain of the GEM device!
Gain = $-303.9 \times \text{Pressure (in Pascal)} + 35509$

Motivation:
The gain process \rightarrow pressure dependent
(GEM is a open air system)

k:
Pressure correct the cosmic run data to get cosmic ray amplification data that reflects the performance of the detector under 1 atm.

Effective Gain = $\#$ of Electrons read out at the anode board/$\#$ of Electrons ionized at the drift region

Gain data of a cosmic run

[*1] Park, Seongtae PhD. “Hadron Calorimeter with GEMs“, Powerpoint, CALICE Workshop, March 2010

[*2]: Baldelomar, Edward (Unpublished).
- Long term behavior of the **MPV of the charge value** at the anode read-out pads

![MPV vs Date](image_url)
Before pressure correction

\[\langle Q \rangle = 33.12 \pm 0.40 \text{ fC} \]

After pressure correction

\[\langle Q \rangle = 34.75 \pm 0.37 \text{ fC} \]
Challenge:
Aging readout KPiX chip.
Some channels are performing worse than the rest.

Study:
Isolating the bad channels

Possible solution:
Raising the threshold
Masking the channel

Cluster of hits in some channels
High RMS value for some channels in pedestal data
Creating bad Channels: By normalized hit count in cosmic ray runs

- **X9 cosmic ray runs done over 2 months**

Normalization of the hit count of each channel

Creating a Normalized hits of each channel vs runs graph

Finding a list of channels with the highest average normalized hit value
Locating bad channels: by the **RMS value** of the pedestal data

The RMS value of the pedestal data is a reflection to the condition of the electronics.

Lower RMS -> Better electronics condition

Finding the RMS value of the pedestal data

Creating RMS value over time graph of every channels

Finding a list of channels with a the highest average RMS value
Noise run top 10 highest RMS

<table>
<thead>
<tr>
<th>Channel#</th>
<th>Average RMS value (femtoCoulomb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>126</td>
<td>1.357756</td>
</tr>
<tr>
<td>192</td>
<td>1.219496</td>
</tr>
<tr>
<td>0</td>
<td>1.15875</td>
</tr>
<tr>
<td>159</td>
<td>1.071566</td>
</tr>
<tr>
<td>254</td>
<td>1.04514</td>
</tr>
<tr>
<td>161</td>
<td>0.963316</td>
</tr>
<tr>
<td>510</td>
<td>0.879144</td>
</tr>
<tr>
<td>490</td>
<td>0.867683</td>
</tr>
<tr>
<td>128</td>
<td>0.774578</td>
</tr>
<tr>
<td>158</td>
<td>0.770403</td>
</tr>
</tbody>
</table>

Cosmic Run top 10 Normalized Hits

<table>
<thead>
<tr>
<th>Channel#</th>
<th>Normalized Hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>126</td>
<td>0.039742</td>
</tr>
<tr>
<td>0</td>
<td>0.034895</td>
</tr>
<tr>
<td>159</td>
<td>0.034249</td>
</tr>
<tr>
<td>192</td>
<td>0.031018</td>
</tr>
<tr>
<td>161</td>
<td>0.028110</td>
</tr>
<tr>
<td>127</td>
<td>0.023910</td>
</tr>
<tr>
<td>65</td>
<td>0.021325</td>
</tr>
<tr>
<td>62</td>
<td>0.018417</td>
</tr>
<tr>
<td>510</td>
<td>0.018094</td>
</tr>
<tr>
<td>490</td>
<td>0.017771</td>
</tr>
</tbody>
</table>
✓ **Pressure Correction:**
 ➢ Found the gain of the chamber at 1 atm.

✓ **The Noise Channels Studies:**
 ➢ Some channels need to be **masked** or the **threshold need to be raised**.

✓ **The Long Term Behavior:**
 ➢ GEM is capable of giving us a **stable long term behavior**
 ➢ Chamber is Characterized by:
 ~35 fC MPV for cosmic ray MIPs
 ~0.5 fC of KPiX noise,
 A few fC of Chamber noise

We conclude that GEM-based active layer should work well for a digital calorimeter.
UTA has worked on the GEM system for over 10 years:

- Different chambers have been used: 10cm x 10cm, 1 inch x 1 inch, 30cm x 30 cm.

The 30x30 prototype chamber has shown a stable behavior over the past 2 years. A new prototype chamber 1m x 1m LGEM is under construction right now for us to understand the technology better as a potential gap detector for the project in ILC.

[*] Park, Seongtae PhD. “Hadron Calorimeter with GEMs“, Powerpoint, CALICE Workshop, March 2010
(Above): Kpix read-out pad, made out of 64 small individual pads, stimulation of a hit

Adding the highest and second highest value together for a summed charge value
-> Enable detecting of charge signal that fall between 2 readout pads