Formula Sheet for LSU Physics 2113, Second Exam, Spring '15

• Constants, definitions:

$$g = 9.8 \, {{\rm m} \over {{\rm s}^2}}}$$
 $R_{Earth} = 6.37 \times 10^6 \, {\rm m}$ $M_{Earth} = 5.98 \times 10^{24} \, {\rm kg}$ $G = 6.67 \times 10^{-11} \, {{\rm m}^3 \over {
m kg \cdot {\rm s}^2}}}$ $R_{Moon} = 1.74 \times 10^6 \, {\rm m}$ Earth-Sun distance $= 1.50 \times 10^{11} \, {\rm m}$ $M_{Sun} = 1.99 \times 10^{30} \, {\rm kg}$ $M_{Moon} = 7.36 \times 10^{22} \, {\rm kg}$ Earth-Moon distance $= 3.82 \times 10^8 \, {\rm m}$ $\epsilon_o = 8.85 \times 10^{-12} \, {{\rm C}^2 \over {
m Nm}^2}}$ $k = {1 \over 4\pi \epsilon_o} = 8.99 \times 10^9 \, {{
m Nm}^2 \over {
m C}^2}$ $e = 1.60 \times 10^{-19} \, {\rm C}$ $e = 1.60 \times 10^{-19} \, {\rm C}$ dipole moment: $\vec{p} = q\vec{d}$ $m_e = 9.11 \times 10^{-31} \, {\rm kg}$ charge densities: $\lambda = {Q \over L}$, $\sigma = {Q \over A}$, $\rho = {Q \over V}$ Volume of a cylinder: $A = 2\pi r\ell$ Volume of a cylinder: $V = \pi r^2\ell$

• Units:

 $\mathbf{Joule} = \mathbf{J} = \mathbf{N} \cdot \mathbf{m}$

• Kinematics (constant acceleration):

$$v = v_o + at$$
 $x - x_o = \frac{1}{2}(v_o + v)t$ $x - x_o = v_o t + \frac{1}{2}at^2$ $v^2 = v_o^2 + 2a(x - x_o)$

• Circular motion:

$$F_c=ma_c=rac{mv^2}{r},~~T=rac{2\pi r}{v},~~v=\omega r$$

• General (work, def. of potential energy, kinetic energy):

$$K=rac{1}{2}mv^2$$
 $ec{F}_{
m net}=mec{a}$ $E_{
m mech}=K+U$ $W=-\Delta U$ (by field) $W_{ext}=\Delta U$ (if objects are initially and finally at rest)

• Gravity:

Newton's law:
$$|\vec{F}| = G \frac{m_1 m_2}{r^2}$$
 Gravitational acceleration (planet of mass M): $a_g = \frac{GM}{r^2}$ Gravitational Field: $\vec{g} = -G \frac{M}{r^2} \hat{r} = -\frac{dV_g}{dr}$ Gravitational potential: $V_g = -\frac{GM}{r}$ Law of periods: $T^2 = \left(\frac{4\pi^2}{GM}\right)r^3$ Potential Energy: $U = -G \frac{m_1 m_2}{r_{12}}$ Potential Energy of a System (more than 2 masses): $U = -\left(G \frac{m_1 m_2}{r_{12}} + G \frac{m_1 m_3}{r_{13}} + G \frac{m_2 m_3}{r_{23}} + ...\right)$ Gauss' law for gravity: $\oint_S \vec{g} \cdot d\vec{S} = -4\pi G M_{ins}$

• Electrostatics:

Coulomb's law:
$$|\vec{F}| = k \frac{\mid q_1 \mid \mid q_2 \mid}{r^2}$$
 Force on a charge in an electric field: $\vec{F} = q \vec{E}$

Electric field of a point charge:
$$|\vec{E}| = k \frac{|q|}{r^2}$$

Electric field of a dipole on axis, far away from dipole:
$$ec{E} = rac{2kec{p}}{z^3}$$

Electric field of an infinite line charge:
$$|ec{E}| = rac{2k\lambda}{r}$$

Electric field at the center of uniformly charged arc of angle
$$\phi$$
: $|\vec{E}| = \frac{\lambda \sin(\phi/2)}{2\pi\epsilon_0 R}$

Torque on a dipole in an
$$\vec{E}$$
 field: $\vec{\tau} = \vec{p} \times \vec{E}$, Potential energy of a dipole in \vec{E} field: $U = -\vec{p} \cdot \vec{E}$

• Electric flux:
$$\Phi = \int \vec{E} \cdot d\vec{A}$$

$$ullet$$
 Gauss' law: $\epsilon_o \oint ec{E} \cdot dec{A} = q_{enc}$

• Electric field of an infinite non-conducting plane with a charge density
$$\sigma$$
: $E = \frac{\sigma}{2\epsilon_o}$

• Electric field of infinite conducting plane or close to the surface of a conductor:
$$E = \frac{\sigma}{\epsilon_0}$$

$$V_f - V_i = -\int_i^f \vec{E} \cdot d\vec{s}$$
 In a uniform field: $\Delta V = -\vec{E} \cdot \Delta \vec{s} = -Ed\cos\theta$ $\vec{E} = -\vec{\nabla}V, \quad E_x = -\frac{\partial V}{\partial x}, \quad E_y = -\frac{\partial V}{\partial y}, \quad E_z = -\frac{\partial V}{\partial z}$ Potential of a point charge q : $V = k\frac{q}{r}$ Potential of n point charges: $V = \sum_{i=1}^n V_i = k\sum_{i=1}^n \frac{q_i}{r_i}$ Electric potential energy: $\Delta U = q\Delta V \quad \Delta U = -W_{\rm field}$ Potential energy of two point charges: $U_{12} = W_{\rm ext} = q_2V_1 = q_1V_2 = k\frac{q_1q_2}{r_{10}}$

• Capacitance: definition:
$$q = CV$$

Capacitor with a dielectric:
$$C = \kappa C_{air}$$

Capacitors in parallel: $C_{eq} = \sum C_i$

Capacitor with a dielectric:
$$C = \kappa C_{air}$$
 Parallel plate: $C = \varepsilon_0 \frac{A}{d}$

Potential Energy in Cap: $U = \frac{q^2}{2C} = \frac{1}{2}qV = \frac{1}{2}CV^2$ Energy density of electric field: $u = \frac{1}{2}\kappa\varepsilon_o |\vec{E}|^2$

Capacitors in parallel: $C_{eq} = \sum C_i$ Capacitors in series: $\frac{1}{C_{eq}} = \sum \frac{1}{C_i}$