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Flux eos

Flux of an Electric Field eoe

Gauss' law eo08

Gauss' Law and Coulomb’s Law e&12

A Charged Isolated Conductor &12 Michael Faraday
(1791-1867)




Carl Friedrich Gauss 1777-1855

Developed a mathematical
theorem that was put into __
its simplest form, in terms of pictures, by Michael Faraday. & 2=

The basic idea can be inferred from observations we have
actually already made:
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Field of a point charge decays as r ////{S\\X\

Tic
field lines

Field of an infinite line of charge decaysas 1/7

Field of a charged infinite plane 1s constant.

Intuitively: field lines behave like a fluid flow, that 1s only
disrupted by the presence of charges. Otherwise, the “amount
of flow” has to be conserved.



Electric flux:

Consider again water flowing through a pipe

vi
Volume of water flowing through
v — the surface in time t: v ¢ 4
—
" Volume of water flowing per
unit time: v 4
Surface of )

If velocity 1s not perpendicular to surface,

Only the perpendicular component contributes
flux =vAcos@ =v- 4

Where we have introduced a vector 4 of
#\}4 magnitude equal to the area of the surface
Y 0 and direction perpendicular to 1t

This mathematical construction can be applied
to any vector. The resulting quantity is called the

flux of the vector.



Electric flux: ®=E-A Units : N m/C’

What if the surface is not a plane?
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Break it up into planar little pieces,
sum.

If you make the pieces infinitesimally
small, you end up with the
flux integral:

® = E-dd
S

This is usually a complicated surface
integral.

<I>=f+f+f

cover 1 side cover 2

b=-FA +0 +EA=0



\'CHECKPOINT 1

The figure here shows a Gaussian cube
of face area A immersed in a uniform
electric field E that has the positive
direction of the z axis. In terms of E
and A, what is the flux through (a) the
front face (which is in the xy plane),
(b) the rear face, (c) the top face, and
(d) the whole cube?
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Sample Problem

Flux through a closed cube, nonuniform field

A nonuniform electric field given by E =30x + 4.0
pierces the Gaussian cube shown in Fig. 23-5a. (E is in
newtons per coulomb and x is in meters.) What is the
electric flux through the right face, the left face, and the
top face? (We consider the other faces in another sample
problem.)

KEY IDEA

We can find the flux ® through the surface by integrating the
scalar product E - dA over each face.

Right face: An area vector A is always perpendicular to its
surface and always points away from the interior of a
Gaussian surface. Thus, the vector dA for any area element
(small section) on the right face of the cube must point in
the positive direction of the x axis. An example of such an
element is shown in Figs. 23-5b and ¢, but we would have an
identical vector for any other choice of an area element on
that face. The most convenient way to express the vector is
in unit-vector notation,
dA = dAi.

From Eq.23-4, the flux ®, through the right face is then
®, = ji-dz =f(3.oﬁ + 4.0) - (dA1)
= f [(3.0x)(dA)i -1 + (4.0)(dA)j - 1)

=j(3.0di +0)=3.ofdi.

We are about to integrate over the right face, but we note
that x has the same value everywhere on that face—namely,
x = 3.0 m. This means we can substitute that constant value

for x. This can be a confusing argument. Although x is cer-
tainly a variable as we move left to right across the figure,
because the right face is perpendicular to the x axis, every
point on the face has the same x coordinate. (The y and z co-
ordinates do not matter in our integral.) Thus, we have

@, = 3.0 f (3.0) dA = 9.0jdA.

The integral [ dA merely gives us the area A = 4.0 m? of the
right face; so

®, = (9.0N/C)(4.0m?) =36 N-m¥C. (Answer)
Left face: The procedure for finding the flux through the
left face is the same as that for the right face. However, two
factors change. (1) The differential area vector le: points in
the negative direction of the x axis, and thus dA = —dAi
(Fig. 23-5d). (2) The term x again appears in our integration,
and it is again constant over the face being considered.
However, on the left face, x = 1.0 m. With these two
changes, we find that the flux @, through the left face is

®, = —-12N-m?%C. (Answer)
Top face: The differential area vector _42 points in the posi-
tive direction of the y axis,and thus dA = dAj (Fig.23-5¢).
The flux @, through the top face is then

®, = f (.04 + 4.07) - (dA))
= f [(3.0x)(dA)i -] + (4.0)(dA);] +]]

=j (0+4.0dA)=4.0fdA

=16 N-m%C.

¥ Gaussian
surface

' ’

x=10m x=30m

The y component
is a constant.

The x component
depends on the
value of x.



Gauss’ law:

Given an arbitrary closed surface, the electric flux through 1t 1s
proportional to the charge enclosed by the surface.

Surface E 0




Two charges, equal in magnitude but opposite in sign, and the field
lines that represent their net electric field. Four Gaussian surfaces
are shown in cross section.

Surface S1.The electric field is outward for all points on this
surface. Thus, the flux of the electric field through this surface
is positive, and so is the net charge within the surface, as
Gauss’ law requires

Surface S2.The electric field is inward for all points on this
surface. Thus, the flux of the electric field through this surface
1s negative and so is the enclosed charge, as Gauss’ law
requires.

Surface S3.This surface encloses no charge, and thus ¢,,. = 0.
Gauss’ law requires that the net flux of the electric field
through this surface be zero. That is reasonable because all the
field lines pass entirely through the surface, entering it at the
top and leaving at the bottom.

Surface S4.This surface encloses no net charge, because the
enclosed positive and negative charges have equal
magnitudes. Gauss’ law requires that the net flux of the
electric field through this surface be zero. That is reasonable
because there are as many field lines leaving surface S4 as
entering it.
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Who cares about the flux?

In general, 1t 1s true that knowing the flux 1s not of much use.

However, 1n situations of high symmetry, it 1s easy to compute
the electric field knowing the flux.

In situations of high symmetry the integral involved in defining
the flux 1n terms of the electric field can be immediate to compute.

In symmetric cases knowing the flux is tantamount to knowing the

field.
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Example: spherical symmetry

One can pick any Gaussian surface one likes, but in this
case it would be foolish to pick anything but a sphere.

The electric field is everywhere perpendicular to the
surface (it 1s radial). Moreover, on the sphere |E| is
constant. Therefore the flux is simply given

by |E| times the area of the sphere:

_ _ 2
O =|E|A=|E |47 } 1o T | coutont's
q 4.777307" law!

But according to Gauss’ law: ® =1
2

By the way, this proves that the field outside a uniformly charged
sphere 1s independent of the radius of a sphere. In particular, we

can replace 1t with a point charge.



Example:

6E. In Fig. 24-29, the charge on a neutral isolated conductor is Charge mn Sl equals q
separated by a nearby positively charged rod. What is the net flux

through each of the five Gaussian surfaces shown in cross sec- Fluxin S (U.Sil’lg Gauss' law)
tion? Assume that the charges enclosed by S, §,, and S, are equal 1

i agnitude. O I
1IN magnitude Rod . "%, (I) = % = TF) = 3
1 £
, ; 0

Sl B .\'34\ 7 7 ";\\

R R 1+ 7 sk
"~ Condigior, N =/ The conductor was, and still

¢ pasGondiciorn B T .
RGN T —— is, uncharged. Therefore ®, =0
Lo N - \“\\i, S

s, ks
FIGURE 24-29 Exercise 6. Andasa consequence,



A charged conductor:

A conductor with a cavity:

Copper

surface

Gaussian
surface

|

.~ ~Copper

surface



Example: Charged spherical shell, compute field as a function of r.
By symmetry all fields are radial, and it is wise to take spherical

Gaussian surfaces. All fluxes aretherefore given by field
times area (important!).

Pick Gaussian surface inside the shell. It encloses no charge.
Flux is zero. Field is zero.

Pick spherical Gaussian surface outside the shell. The enclosed charge is q.
Field 1s radial. Therefore the field is given by that of a point charge q at the center.

E

dore 1



Summary:

» Gauss law provides a very direct way to
compute the electric flux.

* In situations with symmetry, knowing the
flux allows to compute the fields reasonably
casily.



