
Physics 2113  
Lecture 09: MON 15 SEP 

CH23: Gauss’ Law 

Isaac Newton 
 (1642–1727) 

Michael Faraday 
 (1791–1867) 

Physics 2113 
 
 
 
 



Carl Friedrich Gauss 1777-1855 

Developed a mathematical 
theorem that was put into  
its simplest form, in terms of pictures, by Michael Faraday. 

The basic idea can be inferred from observations we have 
actually already made: 

Field of a point charge decays as  

Field of an infinite line of charge decays as  

Field of a charged infinite plane                     is constant.  
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Intuitively: field lines behave like a fluid flow, that is only  
disrupted by the presence of charges. Otherwise, the “amount 
of flow” has to be conserved. 



Electric flux: 

Consider again water flowing through a pipe 

Surface of 
area A 

tv
Volume of water flowing through 
the surface in time t: v t A v!

Volume of water flowing per 
unit time: v A 

If velocity is not perpendicular to surface,  
 

A 
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Only the perpendicular component contributes 

θ 

AvvA
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⋅== θcos flux 

Where we have introduced a vector      of 
magnitude equal to the area of the surface 
and direction perpendicular to it 

A
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This mathematical construction can be applied  
to any vector. The resulting quantity is called the 
flux of the vector. 



Electric flux: AE
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What if the surface is not a plane? 
Break it up into planar little pieces, 
sum. E
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If you make the pieces infinitesimally 
small, you end up with the  
flux integral: 
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This is usually a complicated surface 
integral.  

Example: cylinder 
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Φ = −EA + 0 +EA = 0







Gauss’ law: 

Given an arbitrary closed surface, the electric flux through it is 
proportional to the charge enclosed by the surface. 
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Two charges, equal in magnitude but opposite in sign, and the field 
lines that represent their net electric field. Four Gaussian surfaces 
are shown in cross section. 

Surface S1.The electric field is outward for all points on this 
surface. Thus, the flux of the electric field through this surface 
is positive, and so is the net charge within the surface, as 
Gauss’ law requires 
 
Surface S2.The electric field is inward for all points on this 
surface. Thus, the flux of the electric field through this surface 
is negative and so is the enclosed charge, as Gauss’ law 
requires. 

Surface S3.This surface encloses no charge, and thus qenc = 0. 
Gauss’ law requires that the net flux of the electric field 
through this surface be zero. That is reasonable because all the 
field lines pass entirely through the surface, entering it at the 
top and leaving at the bottom. 
 
Surface S4.This surface encloses no net charge, because the 
enclosed positive and negative charges have equal 
magnitudes. Gauss’ law requires that the net flux of the 
electric field through this surface be zero. That is reasonable 
because there are as many field lines leaving surface S4 as 
entering it. 



Who cares about the flux? 

In general, it is true that knowing the flux is not of much use. 

However, in situations of high symmetry, it is easy to compute 
the electric field knowing the flux. 
 
In situations of high symmetry the integral involved in defining 
the flux in terms of the electric field can be immediate to compute. 
 
 
In symmetric cases knowing the flux is tantamount to knowing the  
field. 
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Example: spherical symmetry 
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One can pick any Gaussian surface one likes, but in this  
case it would be foolish to pick anything but a sphere. 

The electric field is everywhere perpendicular to the  
surface (it is radial). Moreover, on the sphere |E| is  
constant. Therefore the  flux is simply given  
by |E| times the area of  the sphere: 
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But according to Gauss’ law:  
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By the way, this proves that the field outside a uniformly charged  
sphere is independent of the radius of a sphere. In particular, we  
can replace it with a point charge. 



Example: 

. equals S in Charge 1 q
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The conductor was, and still 
is, uncharged.  0 Therefore 4 =Φ
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A charged conductor: 

A conductor with a cavity: 



Example: Charged spherical shell, compute field as a function of r. 

q 

By symmetry all fields are radial, and it is wise to take spherical 
 Gaussian surfaces. All fluxes aretherefore given by field  
times area (important!). 

Pick Gaussian surface inside the shell. It encloses no charge.  
Flux is zero. Field is zero. 

Pick spherical Gaussian surface outside the shell. The enclosed charge is q. 
Field is radial. Therefore the field is given by that of a point charge q at the center. 
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Summary: 

•  Gauss’ law provides a very direct way to 
compute the electric flux. 

•  In situations with symmetry, knowing the 
flux allows to compute the fields reasonably 
easily. 


