Physics 21

Physics 2113
Lecture 40: FRI3 DEC

Review of concepts for the final exam




Electric Fields

» Electric field E at some — —
point in space is defined [ = q )
as the force divided by
the electric charge.

* Force on charge 2 at

some point, by charge 1

is given by ‘Fiz ‘=k‘Q1| ‘%‘
R2

* Electric field at that point
1S

5o klg
‘E12‘= Rzl




Sample Problem

Net electric field due to three charged particles

Figure 22-7a shows three particles with charges g, = +20,
4, = —2Q,and g; = —4Q, each a distance d from the origin.
What net electric field E is produced at the origin?

KEY IDEA

Char_gps q, g>, and g5 produce electric field vectors fl, E},
and E;, respectively, at the origin, and the net electric field is
the vector sum E = El + E2 + E3 To find this sum, we first
must find the magnitudes and orientations of the three field
vectors.

Magnitudes and directions: To find the magnitude of I—-fl,
which is due to g,, we use Eq. 22-3, substituting d for r and
2Q for g and obtaining
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Similarly, we find the magnitudes of E, and E; to be
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Find the net field d
at this empty point. \
(a) Qe

Field away
()
Fig. 22-7 (a) Three pamcles with charges g, ¢»,and g are at the
same distance d from the origin. (b) The electric field vectors E,, E.,

and E,, at the origin due to the three particles. (¢) The electric field
vector Es and the vector sum E, + Ez at the origin.
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We next must find the orientations of the three electric
field vectors at the origin. Because g, is a positive charge,
the field vector it produces points directly away from it,
and because g, and g; are both negative, the field vectors
they produce point directly toward each of them. Thus, the
three electric fields produced at the origin by the three
charged particles are oriented as in Fig. 22-7b. (Caution:
Note that we have placed the tails of the vectors at the
point where the fields are to be evaluated; doing so de-
creases the chance of error. Error becomes very probable
if the tails of the field vectors are placed on the particles
creating the fields.)

E2=

Adding the fields: We can now add the fields vectorially
just as we added force vectors in Chapter 21. However, here
we can use symmetry to simplify the procedure. From Fig.
22-7b, we see that electric fields E, and E, have the same di-
rection. Hence, their vector sum has that direction and has
the magnitude
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-1 40
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which happens to equal the magnitude of field E..

We must now combine two vectors, E; and the vector
sum E, + E,, that have the same magnitude and that are
oriented symmetrically about the x axis, as shown in Fig.
22-7c. From the symmetry of Fig. 22-7¢, we realize that the
equal y components of our two vectors cancel (one is up-
ward and the other is downward) and the equal x
components add (both are rightward). Thus, the net electric
field E at the origin is in the positive direction of the x axis
and has the magnitude

E = 2E,, = 2E;cos 30°

= (2)4;—Q—(0866) = ﬁQ_

dmend®” (Answer)



Gauss’ law:

Given an arbitrary closed surface, the electric flux through 1t 1s
proportional to the charge enclosed by the surface.

Surface E 0




A charged conductor:

A conductor with a cavity:

Copper

surface

Gaussian
surface

|

.~ ~Copper

surface



Example: a charged conducting spherical sheet with a charge inside

The presence of the central charge attracts electrons to
the inner surface of the metal sheet. How much charge
is there on the inner surface of the sheet?

Construct a spherical Gaussian surface inside the sheet.
Since it 1s a conductor, the field there vanishes.
Therefore the flux vanishes. By Gauss’ law, the enclosed

charge should be zero. Therefore the amount of charge
Charge of sheet : q, on the inner surface is -q.

Charge in the outside surface: construct a spherical Gaussian surface outside

the sheet. The enclosed charge is q +gs. The external field will be equal to
that of a point charge of value q+qgs.

Now, the external field is entirely due to the charge on the outside of the
sheet (since the field due to the inner surface cancelled with that of the

point charge). Therefore the amount of charge deposited on the outside
1s q+qs.



Definition of electric potential:

Potential energy of a system per unit charge 7V = v
q

Units... Units...

Joule B
=_(F-ds Units: [V]= = Volt
f- ? V] Coulomb y
// Alessandro Volta
: (1745-1827)
v Unit most
[Volt] = [m] = | — [_] commonly used for
m electric fields
AU
AV =—= AU =gAV elV=electron-volt, the energy that an
9 electron acquires when placed in an

electric potential of 1V

leV =(1.6x107°C)V =1.6x10™""J



Since what matters 1n potential energy (and therefore 1n electrical
potential) are differences, the potential 1s in general defined up to

a constant. One way of fixing that constant is to declare that some
point in space has zero potential. Very commonly infinity 1s chosen
as that point.

In that case we have that V = —%

q

Where W. is the work done by the electric field on a charged particle
as 1t 1s brought from infinity to its current location.

If one moves a charge across a field exerting a force on it, there are
two types of work done: the one by the external force and the one
by the field. Their sum will be equal to the change in the kinetic
energy of the charge. If the particle is stationary before and after the
move, then W, =-Wg,,=qAV.



Potential is not a vector, orientation is irrelevant

(a) In Fig. 24-9a, 12 electrons (of charge —e) are equally
spaced and fixed around a circle of radius R. Relative to V =
0 at infinity, what are the electric potential and electric field at
the center C of the circle due to these electrons?

KEY IDEAS

(1) The electric potential V at C is the algebraic sum of the
electric potentials contributed by all the electrons. (Because
electric potential is a scalar, the orientations of the electrons
do not matter.) (2) The electric field at C is a vector quantity
and thus the orientation of the electrons is important.

Calculations: Because the electrons all have the same neg-
ative charge —e and are all the same distance R from C, Eq.
24-27 gives us

4;80 %. (Answer) (24-28)
Because of the symmetry of the arrangement in Fig.
24-9a, the electric field vector at C due to any given electron
is canceled by the field vector due to the electron that is dia-
metrically opposite it. Thus, at C,

E=0.

V=-12

(Answer)

Potential is a scalar and
orientation is irrelevant.

(a) (&)
Fig. 24-9 (a) Twelve electrons uniformly spaced around a circle.
(b) The electrons nonuniformly spaced along an arc of the original
circle.

(b) If the electrons are moved along the circle until they are
nonuniformly spaced over a 120° arc (Fig. 24-9b), what then
is the potential at C? How does the electric field at C change
(if at all)?

Reasoning: The potential is still given by Eq. 24-28, because
the distance between C and each electron is unchanged and
orientation is irrelevant. The electric field is no longer zero,
however, because the arrangement is no longer symmetric.
A net field is now directed toward the charge distribution.



Resistivity: “Resistance at a point”
These two devices could have the same resistance
_._ R, when measured on the outgoing metal leads.
/ However, it is obvious that inside of them go on
Metal . .
\ streamhnes different things.

In order to quantify this, we introduce the concept
of resistivity:

o . E = -
Resistivity is associated P = 7 or, as vectors, £ = pJ
with a material, resistance

with respect to a device Conductivity : o = 1

constructed with the material. 0
Example:
p Vv V v /
=, R R = p—
L /4 A
- L . Makes sense! Longer — More resistance

V Fora given material:  Thjcker — Less resistance



W cHECKPOINT 3

The figure here shows three
cylindrical copper conductors
along with their face areas and
lengths. Rank them according to
the current through them, great-
est first, when the same potential difference V is placed across their lengths.

151 L/2
> (o
- 2
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Ohm’s laws

and V =iR

R

and therefore

| B

I
=SRIS




63 SSM WWW In the circuit of
Fig.27-65,€¢ = 1.2kV,C = 6.5 uF,R, =
R,=R,=073M). With C com-
pletely uncharged, switch S is sud-
denly closed (at r = 0). At ¢t = 0, what
are (a) current i, in resistor 1, (b) cur-
rent i; in resistor 2, and (c) current i Fig. 27-65

in resistor 3?7 At ¢ = = (that is, after Problem 63.

many time constants), what are (d) i,,

(e) i», and (f) i,? What is the potential difference V, across resistor
2 at (g) t =0 and (h) r = =? (i) Sketch V, versus r between these
two extreme times.

1yl +

Sketch of the solution:

a,b,c) At t=0 capacitor is discharged, so it behaves as a wire:
Resistors 2,3 in parallel with each other and the resulting
resistor in series with R1.

Iyl +

d,e,f) At t=infinity, capacitor fully charged, behaves as if AMA— —
the circuit is open. So there 1s no current in R3, and
R1, R2 are in series.

Lyl +
"
Ol




Magnetic versus electrostatic forces:

An important difference in electric and magnetic fields 1s how
they act on charges.

For electrostatic forces: F = gE
For magnetic forces, F' = gV x B

Charges that do not move, do not feel magnetic forces.

Magnetic forces are perpendicular to both the velocity of charges
and to the magnetic field (electric forces are parallel to the field).

Since magnetic forces are perpendicular to the velocity,
they do no work!

Speed of particles moving in a magnetic field remains constant

in magnitude, the direction changes. Kinetic energy 1s constant
(no work).



Force between parallel wires carrying current

Magnetic field due to wire 1
where the wire 2 1s,

: a=mL
2 27a
— . .
F Force on wire 2 due to this field,
F’21 — le Bl — MOL]1[2
2ra

- (O



67 A length of wire 1s formed into a closed loop with radii a
and b, and carries a current i.

a) What 1s the value of the magnitude

and direction of B at the center?

b) Find the magnetic dipole moment

of the circuit.

Straight pieces do not contribute to B.

Last class, arc: B = Hy 19, !t Atcenter,B=ﬂ°i(1+1)
4z r 4r 4 \a b

b’
2

o) .
Dipole moment, ¢ =i Area = i(ﬂza + ) = %J(az +b%)



Electric oscillations: math

\:::\ Etot = Ema + Eelec Etot = lL iz + l 1
7 g 2 2C
L .
Bt [l dk, =0= lL 2ié + 1 2q@ [ = dq
@ A a2\ 2c\ T ar at
+ | +
diy 1
gl O=L[i— |+—\qgi
GARRD
d’q q| Compare with: d’x
0=L + ' i -
PR M 2 +kx=0
So the math is exactly the same as in the
case of mechanical oscillators if one makes g =q,cos(wt+¢@,)
the substitutions: G—x 1/C—k 1

i—-y LM T




Electric oscillations: graphs and energy
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And remembering that,

2 - 2
cos x+sin x=1, and w =

1

LC

E

tot

mag

+ F

ele

LI
=

The energy is constant and equal to what we started with.



No field outside, field
concentrated inside.

Considering Amperian
loop abcd,

Ideahzed (mﬁmtely t1ghtly woven, infinite) ¢B-d5 = fB -ds + fB -d§ +

| —— g ; 3
B , fB'd§+fB°d§
B/ameee 2 0000000000000000 lolol-lnlol.l.lmr-‘zl“ ) a
s — f— =Bh+0+0+0=Bh
——: a b ienc = mh, B = ﬂoln

xlxlxlxlx!xixlxlex:xetxlxlx;x;x:x;x;x,x;x,x,x,x;x,x,x,x,x,x,xm\ == n=turns per unit length




1 cg——
Self-inductance \d%,_, A e_w(;g
)

Suppose you have a coil with a current that

changes with time. The magnetic flux 1n 1t

will changewith time too. Therefore it will ~ “"nging curent = Changing flux
induce an emf in the coil! 3\ /2
This effect 1s called self-induction.

EMF

1 2

. NO . d
Combining, L=-——  With Faraday's law, emf = -N e
l
3
omf - _AON®) __d(Li) __, di
dt dt dt

When we “take a walk”~ around a circuit to solve it, every time
we find a solenoid, we add a term -L di/dt.

If the current is constant, " the coil is invisible” (piece of wire).
If we have sudden changes of current we can get large emf” s with a coil



The new term in Ampere’ s law (Ampere-Faraday),

o 4D Faraday’ s law told us that a
f; B-dS =y, J IE + Ul changing magnetic flux produces
an electric field. This law tells us
fB-dS =ui+i) that a changing electric flux
S

produces a magnetic field.

y d(I)E " 3: "
=&, 0 displacement current
. Example: a charging capacitor,
dq dE
g=E,AE T =g A— =
0 dt ° dt
. do,. .
i ‘/\ St dt ~la
=l

J
\B

Field due Field due Field due
to current ¢ to current i; to currenti

dd
" dt

E




Normal
|
Reflected

Incident :
. : ay | ‘”ay\
keep. the outgoing rays in the same plane as the .
ingoing rays and the normal of the surface and are  wavefront .

Experiments show that reflection and refraction )
governed by two laws: nterface -/

Law of reflection: the angle of incidence 0,
equals the angle of reflection 0°,.

Law of refraction: n,smné, =n;siné; Snell’s law.

Where n, and n, are called the “index of refraction”

media 1 and 2 respectively. These quantities are

determined experimentally and listed 1n tables.

For air n 1s very approximately 1. All other Willebrord Snell René Descartes
. . . 1580-1626 1596-1650

substances have larger indices of refraction.

If n, equals n, then light travels straight. If n, 1s smaller than n, then
the refracted angle is smaller than the incident, otherwise larger.

It can be so large that the light 1s actually reflected.

It can never be so large that 1t will go beyond the normal.



Electromagnetic waves are able to transport energy from transmitter
to receiver (example: from the Sun to our skin).

The amount of power transported by the wave and its
direction 1s quantified by a vector called Poynting
vector.

5 -

John Henry Poynting (1852-1914)

—ExB |S|=—EB=—E2 For a wave since
Y Ho Cto E 1s perpendicular to B

The units are power per unit area, i.c. Watt/m?

In a wave, the fields change with time in a fixed way. Therefore the
Poynting vector changes too. A better measure of the amount of
energy 1s obtained by averaginng the Poynting vector over one wave
cycle. The resulting quantity is called intensity



1 — The average of sin® over

[=S=—F2= —Em2 sin” (kx — wr) one cycle 1s 1/2.
Cly Cly T
P oy
2C MO 0.2 _,.-"'Il
Engineers commonly use the term “root mean square” value of
a quantity, E, 2
E., .=—"=—F =144F
rms =[5 y Tm m ] = L Ermsz
Cly
Both fields have the same energy density
u —15 E’ —18 (CB)2 —lg B’ =1u
E=5%0 5 €0 5 €0 £0tdg B




The intensity of a wave 1s power per unit area. If one has a source
that emits 1sotropically (equally 1n all directions) the power emitted
N y by the source pierces a larger and larger sphere
as the wave travels outwards. Therefore,

> P

. 7o 1 So the power per unit area

2 decreases as the inverse of
distance squared.

4r

/s N

Waves not only carry energy but also momentum. The effect 1s
very small (we don’t ordinarily feel pressure from light). If light
1s completely absorbed during an interval At, the momentum
transferred 1s given by,

Au
Ap = . And 1f light 1s reflected, one gets double this amount.



When polarized light hits a polarizing sheet,
only the component of the field aligned with the
sheet will get through.

E, = Ecos(0)

And therefore: =1 cos” 6

Polarized sunglasses operate on this formula.
% They cut the horizontally polarized light
" from glare (reflections on roads, cars, etc).







