Physics 2113

Isaac Newton
(1642-1727)

Physics 2113

 Lecture 04: WED AUG 3
CH21: Electric Charge

21-2 Electric Charge 561
21-3 Conductors and Insulators 563
21-4 Coulomb's Law 565

Michael Faraday (1791-1867)

Electric charges

- Two types of charges: positive/negative
- Like charges repel
- Opposite charges attract

Atomic structure :

- negative electron cloud
- nucleus of positive protons, uncharged neutrons
[/Why doesn't the nucleus fly apart??
Why doesn't the atom collapse??I]

Charges in solids

- In a conductor, electrons move around freely, forming a "sea" of electrons. This is why metals conduct electricity.
- Charges can be "induced" (moved around) in conductors.

Blue background = mobile electrons

Red circles = static positive charge (nuclei)

- Since in conductors electrons can move freely ("like water in the sea"), one can alter their distribution just by bringing a charge near the conductor.
-This phenomenon is called "induction". It allows to "move around electricity"
without physical connections.

Insulating solids

- In an insulator, each electron cloud is tightly bound to the protons in a nucleus. Wood, glass, rubber.
- Note that the electrons are not free to move throughout the lattice, but the electron cloud can "distort" locally.

Materials classified based on their ability to move charge

- Conductors are materials in which a significant number of electrons are free to move. Examples include metals.
- The charged particles in nonconductors (insulators) are not free to move. Examples include rubber, plastic, glass.
- Semiconductors are materials that are intermediate between conductors and insulators; examples include silicon and germanium in computer chips.
- Superconductors are materials that are perfect conductors, allowing charge to move without any hindrance.

How to charge an object

- An object can be given some "excess" charge: giving electrons to it (we give it negative charge) or taking electrons away (we "give" it positive charge).
- How do we do charge an object? Usually, moving charges from one surface to another by adhesion (helped by friction), or by contact with other charged objects.
- If a conductor, the whole electron sea redistributes itself.
- If an insulator, the electrons stay where they are put.
- The amounts of electrons displaced in such macroscopic operations is HUGE, about 10^{9} to 10^{10} electrons.

Electroscope

http://www.physicsclassroom.com/mmedia/estatics/esn.html

or

$$
F_{12} \longleftrightarrow-q_{1}
$$

$$
-q_{2} \bigcirc \longrightarrow F_{21}
$$

Coulomb's law -- the force between point charges:

- Lies along the line connecting the charges.
- Is proportional to the magnitude of each charge.
- Is inversely proportional to the distance squared.
- Note that Newton's third law says $\left|\mathrm{F}_{12}\right|=\left|\mathrm{F}_{21}\right|$!!

Coulomb's law

$$
\left|F_{12}\right|=\frac{k\left|q_{1}\right|\left|q_{2}\right|}{r_{12}^{2}} \quad \begin{aligned}
& r_{12} q_{F_{12}}^{F_{21} \longleftarrow-q_{2}} \begin{array}{l}
\text { For charges in a } \\
\text { VACUUM }
\end{array} \\
& \mathrm{k}=8.99 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}}
\end{aligned}
$$

Often, we write k as:

$$
k=1 / 4 \pi \varepsilon_{0} \text { with } \varepsilon_{0}=8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{Nm}^{2}}
$$

Consider the two charges shown in the drawing. Which of the following statements correctly describes the magnitude of the electric force acting on the two charges?

$$
q_{1}=+3.2 \mu \mathrm{C} \quad q_{2}=-1.6 \mu \mathrm{C}
$$

a) The force on q_{1} has a magnitude that is twice that of the force on q_{2}.
b) The force on q_{2} has a magnitude that is twice that of the force on q_{1}.
c) The force on q_{1} has the same magnitude as that of the force on q_{2}.
d) The force on q_{2} has a magnitude that is four times that of the force on q_{1}.
e) The force on q_{1} has a magnitude that is four times that of the force on q_{2}.

Consider the two charges shown in the drawing. Which of the following statements correctly describes the direction of the electric force acting on the two charges?

$$
q_{1}=+3.2 \mu \mathrm{C} \quad q_{2}=-1.6 \mu \mathrm{C}
$$

a) The force on q_{1} points to the left and the force on q_{2} points to the left.
b) The force on q_{1} points to the right and the force on q_{2} points to the left.
c) The force on q_{1} points to the left and the force on q_{2} points to the right.
d) The force on q_{1} points to the right and the force on q_{2} points to the right.

Superposition

- Question: How do we figure out the force on a point charge due to many other point charges?
- Answer: consider one pair at a time, calculate the force (a vector!) in each case using Coulomb' s Law and finally add all the vectors! ("superposition")
- Useful to look out for SYMMETRY to simplify calculations!

Example:

Three equal charges forming an equilateral triangle
Compute force on charge 1

We also know (from previous example) that: $\left|F_{12}\right|=\left|F_{13}\right|=1.6 \mathrm{~N}$
And the angle is 60 degrees (equilateral)
Computing x, y components:
Magnitude of total force:
$F_{12}{ }^{x}=0$,
$F_{12}{ }^{y}=1.6 \mathrm{~N}$,
$F_{13}{ }^{x}=1.6 N \sin \left(60^{\circ}\right)=1.38 N$,
$F_{13}{ }^{y}=1.6 \mathrm{~N} \cos \left(60^{\circ}\right)=0.8 \mathrm{~N}$.

$$
\left|F_{1}^{\text {tot }}\right|=\sqrt{\left(F_{1}^{x}\right)^{2}+\left(F_{1}^{y}\right)^{2}}=\sqrt{1.38^{2}+2.4^{2}} N
$$

Angle with respect to x axis:

$$
\alpha=\arctan \left(\frac{F_{1}^{y}}{F_{1}^{x}}\right)=\arctan \left(\frac{2.4}{1.38}\right)=60^{\circ} \rightarrow 120^{\circ}
$$

Superposition: symmetry

Charge $+\mathbf{q}$ placed at center

What is the force on central particle?

Summary

- Electric charges come with two signs: positive and negative.
- Like charges repel, opposite charges attract, with a magnitude calculated from Coulomb's law: $\mathrm{F}=\mathrm{kq}_{1} \mathrm{q}_{2} / \mathrm{r}^{2}$
- Electric forces are added as vectors.

