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13.7: Planets and Satellites: Kepler’s 15t Law

1. THE LAW OF ORBITS: All planets move in elliptical
orbits, with the Sun at one focus.
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Fig. 13-12 A planet of mass m moving
in an elliptical orbit around the Sun.The
Sun, of mass M, 1s at one focus F of the el-
lipse. The other focus is F’, which 1s located
in empty space. Each focus 1s a distance ea
from the ellipse’s center, with e being the
eccentricity of the ellipse. The semimajor
axis a of the ellipse, the perihelion (nearest
the Sun) distance R, and the aphelion (far-
thest from the Sun) distance R, are also
shown.

Johannes Kepler

1546-1601



13.7: Planets and Satellites: Kepler’s 2" Law

The planet sweeps These are the two

out this area. momentum components.

Fig. 13-13 (a) In time At, the line r con-
necting the planet to the Sun moves through
an angle Af, sweeping out an area AA
(shaded). (b) The linear momentum p’ of the
planet and the components of p.

2. THE LAW OF AREAS:

A line that connects a planet to
the Sun sweeps out equal areas
in the plane of the planet’s
orbit in equal time intervals;
that is, the rate dA/dt at which it
sweeps out area A is constant.

= A o<t

Angular momentum, L:

L

rp, = (r)(mv,) = (r)(mor)

mriw.
dA L
dt 2m



13.7: Planets and Satellites: Kepler’s 3 Law

3. THE LAW OF PERIODS: The square of the period of any planet is
proportional to the cube of the semi-major axis of its orbit.

Consider a circular orbit with radius r
(the radius of a circle is equivalent to
the semimajor axis of an ellipse). Kepler's Law of Periods for the Solar
Applying Newton’ s second law to the System
orbiting planet yields

Semimajor T%la®

Axis Period (107*

- 27 .

GA;[,” = (m)(w’r). T = Py Planet a (10" m) T(y) y2/m?)
2 ,

: : Mercury 5.79 0.241 2.99
Usmg the relation of the_ angular Venus 0.8 0.615 3.00
velocity, w, and the period, T, one Earth 15.0 1.00 2.96
gets: Mars 22.8 1.88 2.98

Jupiter 77.8 11.9 3.01
Saturn 143 29.5 2.98

4772 Uranus 287 84.0 2.98
T2 = ( ),,3 (law of periods). Neptune 450 165 2.99

GM Pluto 590 248 2.99




13.7: Newton Derived Kepler’s Laws from Inverse Square Law!
http://Igalileo.phys.virginia.edu/classes/152.mf1i.spring02/KeplersLaws.htm

v, =dridt, v, =rd8ldi=re@ @ =d8/dt As

Kepler’s Second Law First:
Equal Areas Proportional to Equal
Time!

Area swept out in small Af = %rgﬁé’ =

L=wmrv, =mr‘@ Angular Momentum

Rate of sweeping out of area,

dA /dt =c

is proportional to the angular momentum L,

and equal to L/2m = Constant = C.
—> A o<t



13.7: Newton Derived Kepler’s Laws from Inverse Square Law!
http://galileo.phys.virginia.edu/classes/1 52.mf1i.springOZl}P?(eplersLaws.htm

Kepler’s First Law:
Ellipse with Sun at Focus
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13.7: Newton Derived Kepler’s Laws from Inverse Square Law!
http://galileo.phys.virginia.edu/classes/1 52.mf1i.springOZlé(eplersLaws.htm

Kepler’s 3 Law:
For Ellipse
—— |
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Example, Halley’ s Comet

Comet Halley orbits the Sun with a period of 76 years and, in
1986, had a distance of closest approach to the Sun, its peri-
helion distance R, of 8.9 X 10'° m. Table 13-3 shows that this
is between the orbits of Mercury and Venus.

(a) What is the comet’s farthest distance from the Sun,
which is called its aphelion distance R,?

KEY IDEAS

From Fig. 13-12, we see that R, + R, = 2a, where a is the semi-
major axis of the orbit. Thus, we can find R, if we first find a.
We can relate a to the given period via the law of periods (Eq.
13-34) if we simply substitute the semimajor axis a for r.

Calculations: Making that substitution and then solving

for a, we have
(GMTZTB
T\ T4 '
If we substitute the mass M of the Sun, 1.99 X 10*° kg, and

the period T of the comet, 76 years or 2.4 X 10° s, into Eq.
13-35, we find that a = 2.7 X 10> m. Now we have

(13-35)

R,=2a-R,
= (2)(2.7 X 102 m) — 8.9 X 10" m

=53 X 10” m. (Answer)

Table 13-3 shows that this is a little less than the semimajor
axis of the orbit of Pluto. Thus, the comet does not get far-
ther from the Sun than Pluto.

(b) What is the eccentricity e of the orbit of comet Halley?

KEY IDEA

We can relate e, a, and R, via Fig. 13-12, in which we see that

ea=a— R,

Calculation: We have
- R R
e=——— -1]-"r (13-36)
a a
=1- P 0.97 (Answer)
2.7 X 102 m o

This tells us that, with an eccentricity approaching unity, this
orbit must be a long thin ellipse.




13.8: Satellites: Orbits and Energy

As a satellite orbits Earth in an elliptical
path, the mechanical energy E of the
satellite remains constant. Assume that the
satellite’ s mass is so much smaller than
Earth’ s mass.

The potential energy of the system is given

by
B GMm
r

U=

For a satellite 1n a circular orbit,

GMm V2
s = m—,
r r
Thus, one gets:
FeK+U= GMm — GMm
2r r
GMm
E=— (circular orbit).
2r

For an elliptical orbit (semimajor axis a),

GMm

E=-—
2a

Fig. 13-15 Four orbits with different ec-
centricities ¢ about an object of mass M. All
four orbits have the same semimajor axis a
and thus correspond to the same total me-

chanical energy E.

This is a plot of a
satellite's energies
versus orbit radius.

Energy

The kinetic energy
K(») is positive.

U(n)

The potential energy
and total energy
are negative.




Example, Mechanical Energy of a Bowling Ball

A playful astronaut releases a bowling ball, of mass m =
7.20 kg, into circular orbit about Earth at an altitude & of
350 km.

(a) What is the mechanical energy E of the ball in its
orbit?

KEY IDEA

We can get E from the orbital energy, given by Eq. 13-40
(E=—GMm/2r). if we first find the orbital radius r (It is
not simply the given altitude.)

Calculations: The orbital radius must be
r=R+ h=6370 km + 350 km = 6.72 X 10° m,

in which R is the radius of Earth. Then, from Eq. 13-40, the
mechanical energy is

_ GMm

2r
B (6.67 X 107" N-m%kg?)(5.98 X 10** kg)(7.20 kg)

(2)(6.72 X 10°m)
= —2.14 X 108J = =214 MI.

E =

(Answer)

(b) What is the mechanical energy E, of the ball on the
launchpad at Cape Canaveral (before it, the astronaut, and
the spacecraft are launched)? From there to the orbit, what
is the change AE in the ball’'s mechanical energy?

KEY IDEA

On the launchpad. the ball is not in orbit and thus Eq. 13-40
does not apply. Instead, we must find E, = K, + U, where
K, is the ball’s kinetic energy and U, is the gravitational po-
tential energy of the ball-Earth system.

Calculations: To find U, we use Eq. 13-21 to write

- GMm
R
_(6.67 X 107" N-m%kg?)(5.98 X 10* kg)(7.20 kg)
6.37 X 10°m
= —4.51 X 108J = —451 M.
The kinetic energy K|, of the ball is due to the ball’s motion
with Earth’s rotation. You can show that K, is less than 1 MJ,

which is negligible relative to U,. Thus, the mechanical en-
ergy of the ball on the launchpad is

E,= Ko+ Uy~ 0 — 451 MJ = —451 MJ.

U0=

(Answer)

The increase in the mechanical energy of the ball from
launchpad to orbit is

AE = E — E, = (=214 MJ) — (—451 MJ)

= 237 M. (Answer)

This is worth a few dollars at your utility company.
Obviously the high cost of placing objects into orbit is not
due to their required mechanical energy.



13.9: Einstein and Gravitation

The fundamental postulate of
Einstein’ s general theory of
relativity about gravitation (the
gravitating of objects toward
cach other) 1s called the
principle of equivalence,
which says that gravitation and
acceleration are equivalent.

(a) (b)

Fig. 13-17 (a) A physicist in a box resting
on Earth sees a cantaloupe falling with
acceleration a = 9.8 m/s2. (b) If he and the
box accelerate in deep space at 9.8 m/s?, the
cantaloupe has the same acceleration rela-
tive to him. It is not possible, by doing
experiments within the box, for the physicist
to tell which situation he is in. For example,
the platform scale on which he stands reads
the same weight in both situations.



13.9: Einstein and Gravitation: Curvature of Space

Curved space
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Fig. 13-18 (a)Two objects moving along lines of longitude toward the south pole
converge because of the curvature of Earth’s surface. (b) Two objects falling freely near
Earth move along lines that converge toward the center of Earth because of the curvature
of space near Earth. (¢) Far from Earth (and other masses), space is flat and parallel paths
remain parallel. Close to Earth, the parallel paths begin to converge because space is
curved by Earth’s mass.



13.9: Einstein and Gravitation: Curvature of Space
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Fig. 13-19 (a) Light from a distant quasar follows curved paths around a galaxy or

a large black hole because the mass of the galaxy or black hole has curved the adjacent

space. If the light 1s detected, it appears to have originated along the backward extensions

of the final paths (dashed lines). (b) The Einstein ring known as MG113140456 on the

computer screen of a telescope. The source of the light (actually, radio waves, which are

a form of invisible light) 1s far behind the large, unseen galaxy that produces the ring;

a portion of the source appears as the two bright spots seen along the ring. (Courtesy

National Radio Astronomy Observatory)



13.9: Einstein and Gravitation: Gravity Waves
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Summary:

* Kepler’s laws.
» They can be derived from Newton’s law.

* Einstein’s theory 1s the modern description
of gravity. Gravity 1s not a force but a
deformation of space-time.



