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13.4: Gravitation Inside Earth: Shell Game Il "2

http://en.wikipedia.org/wiki/Shell_theorem#Inside_a_shell 4 S

/ N

/ b
A uniform shell of matter exerts no net gravitational force on a 3 \
particle located inside it. { . Moo
! I |
(l() \\ r //

\ 4

N //
X \\\~._ —.”/
= dFy, ‘
dF ..~ ™ Z
S N & =
£ dFdown

The components of the force in the x-direction cancel out by symmetry.
The components of the net force in the z-direction add up by symmetry.

The total net force integrates up to zero.

Force From GREATER Shell Proof same as for r > R but with different limits of integration!

Mass FARTHER From m

Exactly Cancels the Force from R+r 2 2
LESSER Shell Mass CLOSER _ GMm J 1+ = R <=0
to m due to inverse-square law! net 41’2R S2
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Applying the shell law to concentric shells proves can treat Earth (uniform sphere)*ég
if all mass are in shells < r are at center and NO shells with radius > r contribute any

force at all!



13.4: Gravitation Inside Earth: Shell Game Il

1. A uniform shell of matter exerts no net gravitational i

force on a particle located inside it. \ |
2. A uniform shell of matter exerts a force on a particle 1
located outside it as if all the mass was at the e
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d@IlSlty = P = at Center of Earth?
‘/tot
M >
Mins:p‘/ins: ‘/ins:M_?)
Vit R
GmM . Gm - GmM
force=F = —=—0|M—= |= —r
r r R R

field = g == = 2| M-

M, ’ M
GM,, G(Mr_j:G )

Inside the Earth the Force and Field Scale LINEARLY with r.
This is like Hooke’s Law for a Mass on a Spring.



13.4: Gravitation Inside Earth: Summary Moving From Center Out

1. INSIDE a uniform sphere field/force INCREASES like r
2. OUTSIDE a uniform sphere field/force DECREASES like 1/r?
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INSIDE OUTSIDE




13.4: Gravitation Inside Earth: Gauss’s Law for Gravity £ N
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13.4: Gravitation Inside Earth

A uniform shell of matter exerts no
net gravitational force on a particle
located inside it.

Sample Problem

In the 2012 remake of the film Total Recall, Colin
Farrell rides a train that falls through the center
of the Earth.

In the film Farrell experiences normal gravity
until he hits the core, then experiences a
moment of weightlessness at the core, and then
resumes normal gravity (in the opposite
direction) as the train continues to the other side
of the Earth.

Decide if this is what really would happen (or if it
is complete Hollywood BS) by finding the
gravitational force on the capsule of mass m
when it reaches a distance r from Earth’ s
center. Assume that Earth is a sphere of uniform
density r (mass per unit volume).

Calculations:
P GmM,,
2
4713
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d7Gm
F = % r. Like mass on spring!

The force magnitude depends linearly on the
capsule’ s distance r from Earth’ s center.
Thus, as r decreases, F also decreases, until it
is zero at Earth’ s center.

However the train and occupants are both
in free fall would be weightless the entire
time! Complete Hollywood BS!



13.6: Gravitational Potential Energy | ¢t s shoot a baseball directly away from

Earth along the path in the figure. We want
to find the gravitational potential energy U

1 of the ball at point P along its path, at radial
dr distance R from Earth’ s center.
# Work is done The work W done on the ball by the
as the baseball gravitational force as the ball travels
from point P to a great (infinite) distance
IF moves upward. from Earth is:

W= f F(r)-d7.
R
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F(r)-d7 = F(r)drcos ¢ = —

dr,
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where W is the work required to move the
ball from point P (at distance R) to infinity.
Work can also be expressed in terms

of potential energies as

GMm

U,~U=-W. == U=W=-—"



13.6: Gravitational Potential Energy

The gravitational potential energy of the
two-particle system is:

B GMm
-

U=

U(r) approaches zero as r approaches
infinity and that for any finite value of r, the
value of U(r) is negative.

If the system contains more than two
particles, consider each pair of particles in
turn, calculate the gravitational potential
energy of that pair with the above relation,
as if the other particles were not there, and
then algebraically sum the

results. That is,
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Here too.

Fig. 13-8 A system consisting of three
particles. The gravitational potential energy
of the system 1s the sum of the gravitational
potential energies of all three pairs of
particles.



Gravitational Potential Energy U vs. .
Gravitational Potential V Equal Potential
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13.6: Gravitational Potential Energy Tne work done along each circular arc is
Path Independence

zero, because the direction of F is
perpendicular to the arc at every point.
Thus, W is the sum of

only the works done by F along the three
radial lengths.

The gravitational force is a conservative
force. Thus, the work done by the
gravitational force on a particle moving
from an initial point / to a final point fis
independent of the path taken between the
points. The change DU in the gravitational
potential energy from point / to point fis
given by

AU = U;— U= —W.

4

Since the work W done by a conservative
force is independent of the actual path
taken, the change AU in gravitational
potential energy is also independent of
the path taken.



13.6: Gravitational Potential Energy: Potential Energy and Force

The minus sign indicates that the force on mass m points
radially inward, toward mass M.



13.6: Gravitational Potential Energy: Potential and Field

lines of equal field strength
- AN
g -,
N
R SRS .
B - N N
s e N .
; . N \
; ¢ P e N \
/ . - ~n S \
. . N \ \
/ 0 g P kS ~ ~ \
/ . - \
;] s rd " e ety . Y \ \
/ . N \

I SN\ SN \\
v ’ ’ ) Ay \\ \ \
i 1 I \ " \ \
| Lo Y
| ' T (R ' N
' i [ [ 1 H
| I LR 0 i

T —
\ N fl ' :
' i 1 3 J T

)
[
\ o S /
! . N ) : i
' \ N ;7 / h
' DY o /
: < \ .~ LN J ]
\ \ DN P AN /
\ ~ - /
R AN ~ - / /
\ B . /
\ N ~ . ,
N e / /
N < - - /
N . - L7 /
N . ,
. ~ - /
< .
. <
N .

¥

The minus sign indicates that the field points radially inward, toward mass M.




13.6: Gravitational Potential Energy: Escape Speed

If you fire a projectile upward, there is a certain minimum initial speed that
will cause it to move upward forever, theoretically coming to rest only at
infinity.

This minimum initial speed is called the (Earth) escape speed.

Consider a projectile of mass m, leaving the surface of a planet (mass M,
radius R) with escape speed v. The projectile has a kinetic energy K given by
Y2 mv?, and a potential energy U given by: _ GMm

R
When the projectile reaches infinity, it stops and thus has no kinetic energy. It
also has no potential energy because an infinite separation between two
bodies is our zero-potential-energy configuration. Its total energy at infinity is
therefore zero. From the principle of conservation of energy, its total energy
at the planet’s surface must also have been zero, and so

U:

K+ U-= %mv2 - (— GMm) =
R
This gives the escape speed GM

R



13.6: Gravitational Potential Energy: Escape Speed

Some Escape Speeds

Body Mass (kg) Radius (m) Escape Speed (km/s)
Ceres? 1.17 X 10% 3.8 X 10° 0.64
Earth’s moon® 7.36 X 10% 1.74 X 108 2.38

Earth 5.98 x 10* 6.37 X 10° 11.2

Jupiter 1.90 X 107 7.15 X 107 59.5

Sun 1.99 X 107 6.96 X 10% 618

Sirius B? 2 X 107 1 %107 5200

Neutron star¢ 2 X 10 1 x 10 2 X 10°

“The most massive of the asteroids.
b A white dwarf (a star in a final stage of evolution) that is a companion of the bright star Sirius.
“The collapsed core of a star that remains after that star has exploded in a supernova event.

M =82x10" kg = 4.1 Million Solar Masses (Mass of Object at Center of Galaxy)

R= 12x10"m  (Radius of Object at Center of Galaxy)
M

== 6.83x10% (Center of Galaxy is Super-Massive Black Hole!)




Example:

An asteroid, headed directly toward Earth, has a speed of
12 km/s relative to the planet when the asteroid is 10 Earth
radii from Earth’s center. Neglecting the effects of Earth’s
atmosphere on the asteroid, find the asteroid’s speed vy
when it reaches Earth’s surface.

KEY IDEAS

Because we are to neglect the effects of the atmosphere on
the asteroid, the mechanical energy of the asteroid—Earth
system is conserved during the fall. Thus, the final mechani-
cal energy (when the asteroid reaches Earth’s surface) is
equal to the initial mechanical energy. With kinetic energy K
and gravitational potential energy U, we can write this as

Also, if we assume the system is isolated, the system’s
linear momentum must be conserved during the fall.
Therefore, the momentum change of the asteroid and that of
Earth must be equal in magnitude and opposite in sign.
However, because Earth’s mass is so much greater than the
asteroid’s mass, the change in Earth’s speed is negligible
relative to the change in the asteroid’s speed. So, the change
in Earth’s kinetic energy is also negligible. Thus, we can
assume that the kinetic energies in Eq. 13-29 are those of the
asteroid alone.

Calculations: Let m represent the asteroid’s mass and M
represent Earth’s mass (5.98 X 10?* kg). The asteroid is ini-
tially at distance 10R; and finally at distance Rz, where Ry is

Earth’s radius (6.37 X 10° m). Substituting Eq. 13-21 for U
and 2mv? for K, we rewrite Eq. 13-29 as

10 GMm L GMm
2 Ry 2500 10R,
Rearranging and substituting known values, we find
2GM 1
F=vi+ 1 - )
PV TR, ( 10
= (12 X 10° m/s)?
N 2(6.67 X 1071 m¥/kg-s?)(5.98 X 10%* kg) 0.9
6.37 X 10°m '
= 2.567 X 108 m?%s?,

and

ve=1.60 X 10* m/s = 16 km/s. (Answer)

At this speed, the asteroid would not have to be par-
ticularly large to do considerable damage at impact. If it
were only 5 m across, the impact could release about as
much energy as the nuclear explosion at Hiroshima.
Alarmingly, about 500 million asteroids of this size are
near Earth’s orbit, and in 1994 one of them apparently
penetrated Earth’s atmosphere and exploded 20 km
above the South Pacific (setting off nuclear-explosion
warnings on six military satellites). The impact of an aster-
oid 500 m across (there may be a million of them
near Earth’s orbit) could end modern civilization and
almost eliminate humans worldwide.



Summary

* A uniform shell exerts no gravitational force
inside 1it.

* For a uniform ball, gravitational field grows
inside of 1t and decreases outside of it.

* Gauss’ law: easy way to see all this.



