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Given V find E _

I
Consider a test charge moving from p / :
one equipotential surface to another. Then /ﬁ@/
the work done by the electric field on the

chargeis: I = (qo)(_dV)

Two
cquipotential

But work done is also: W} = f F ds surfaces

Hence,

W =gq,E - ds = q,E cosbds = g, E ds

E_= Ecos8,"projection of E along ds"

— F L= _d_V
ds
If V depends on more than one directions:
dV
E = _ﬂ E =—— E = _ﬂ

X é,x y 0')y Z Or,Z



Electric field due to a charged disk

We start with the computation of the potential, which
we worked out last class.

We consider a differential element of radius R’
and width dR’, enclosing a surface area 27TR'dR’

Enclosed charge: dq =0 (ZJ'ER dR ,)

This enclosed charge leads to the potential:
dq
4me,r

dV =

We can then integrate this potential from 0 to R to get the

net potential due to the disk:

S P = TR




Finding the field from the potential

The electric potential at any point on the central axis of a
uniformly charged disk is given by Eq. 24-37,

V= -2+ R -2
0

Starting with this expression, derive an expression for the
electric field at any point on the axis of the disk.

KEY IDEAS

We want the electric field E as a function of distance z alon_g

the axis of the disk. For any value of z, the direction of E
must be along that axis because the disk has circular symme-

try about that axis. Thus, we want the component E, of E in
the direction of z. This component is the negative of the rate
at which the electric potential changes with distance z.

Calculation: Thus, from the last of Eqs. 24-41, we can write

E, = _oV _ _Liz(\/zz + R — 7)
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(Answer)

This is the same expression that we derived in Section 22-7
by integration, using Coulomb’s law.



Electric potential energy of a system of charges

The electric potential energy of a system of charges 1s equal to the
work done in assembling that system by an external observer by
bringing each of those charges from infinity.

The external work done has opposite sign as the work done by the
field.

For example, the work done to bring a positive charge q in the
field of a positive charge Q (at a distance r) is:

q0Q

W =qV =
1 4me,r




+q 1 5 What 1s the work required to set up this

T‘ S ’T configuration?

J J Strategy: bring 1in charges one at a time!

@ 4

—(/ Jr([
Why? Until we bring it in there is no field! Charges do not
Charge #1: AW=0 interact with their own field.

Charge #2: AW =—-qV, =—q q
4re a

q q
Charge #3: AW =—q(V, +V,) = - _
: a0 +7) q(4m€0a 477780\/561)

q 2q
Charge#4: AW =gV, +V, +V,) = —
= Wi+ r+h) q(4ﬂ€0ﬁa 471’8061)

2 2
q 11 q
AW =AW, + AW, + AW, + AW, =1 [ -1-1+——+——-2| = —4+-2
! ? ’ * 471’8061( J2 2 ) 4Jtena( 1




Conservation of mechanical energy with electric potential energy

An alpha particle (two protons, two neutrons) moves into a
stationary gold atom (79 protons, 118 neutrons), passing
through the electron region that surrounds the gold nucleus
like a shell and headed directly toward the nucleus
(Fig. 24-17). The alpha particle slows until it momentarily
stops when its center is at radial distance r = 9.23 fm from the
nuclear center. Then it moves back along its incoming path.
(Because the gold nucleus is much more massive than the
alpha particle, we can assume the gold nucleus does not
move.) What was the kinetic energy K of the alpha particle
when it was initially far away (hence external to the gold
atom)? Assume that the only force acting between the alpha
particle and the gold nucleus is the (electrostatic) Coulomb
force.

KEY IDEA

During the entire process, the mechanical energy of the
alpha particle + gold atom system is conserved.

Reasoning: When the alpha particle is outside the atom,
the system’s initial electric potential energy U, is zero be-
cause the atom has an equal number of electrons and pro-
tons, which produce a net electric field of zero. However,
once the alpha particle passes through the electron region
surrounding the nucleus on its way to the nucleus, the elec-
tric field due to the electrons goes to zero. The reason is that
the electrons act like a closed spherical shell of uniform neg-
ative charge and, as discussed in Section 23-9, such a shell
produces zero electric field in the space it encloses. The al-
pha particle still experiences the electric field of the protons

| e—

Fig. 24-17 Analpha par-
ticle, traveling head-on toward
the center of a gold nucleus,

—

comes to a momentary stop Alpha

(at which time all its kinetic particle

energy has been transferred Gold
to electric potential energy) nucleus
and then reverses its path.

in the nucleus, which produces a repulsive force on the pro-
tons within the alpha particle.

As the incoming alpha particle is slowed by this repulsive
force, its kinetic energy is transferred to electric potential
energy of the system. The transfer is complete when the alpha
particle momentarily stops and the kinetic energy is K, = 0.

Calculations: The principle of conservation of mechanical
energy tells us that

We know two values: U; = 0 and K, = 0. We also know that
the potential energy Uy at the stopping point is given by the
right side of Eq. 24-43, with g, = 2e, g, = 79¢ (in which e is
the elementary charge, 1.60 X 107" C), and r = 9.23 fm.
Thus, we can rewrite Eq.24-44 as

1 (2e)(79%)
4me, 9.23 fm
(8.99 X 10° N-m?*C?)(158)(1.60 X 10~ C)?

923 X107 m

=3.94 X 10712J = 24.6 MeV.

I{‘.=

(Answer)



Example: charged conducting sphere

Conductor:
zero field inside.

f
» V.-V, = —f E-ds

Conductor:
constant

potential inside.

~
U
Y | =







In non-spherical conductors, charges do not distribute themselves on the surface
uniformly. At sharp points or edges, one can get large concentrations of charge,
meaning that the electric fields can be large. Sometimes the fields are so large
that air stops being an insulator and one gets an electric arc.

This is why lightning rods, have the shape of a rod. The field is maximum at the tip.

E tot

Electrons in a conductor placed in an external field arrange

themselves so that the field is perpendicular to the surface
/ of the conductor, since it is an equipotential.

mﬂ\
/

+ +

A



Summary:

Electric Potential

* The electric potential V at point P in
the electric field of a charged object:

-W, U
V=—"2=

do do

Electric Potential Energy
 Electric potential energy U of the
particle-object system:

U=qV.

* If the particle moves through potential
AV

AU = g AV = q(V; - V).

Mechanical Energy

* Applying the conservation of
mechanical energy gives the change in
kinetic energy:

AK = —gAV.
* In case of an applied force in a particle

AK = —qAV + W

app*

* In a special case when AK=0:

Wi =g AV (for K; = K)).

Finding V from E
* The electric potential difference
between two point / and f is:

z—v-—fé‘m:



Summary:

Potential due to a Charged Particle Potential due to a Continuous
* due to a single charged particle at a Charge Distribution
distance r from that particle : * For a continuous distribution of
charge:
1 g 1 J’ d
Vv=—"—= _ q
dmey 1 v 4me, r

* due wa Luuchu.wn of charged particles
Calculating E from V

* The component of E in any direction is:

_ /1 _ l n i av
v ,2, i 4re, ,E, r E,= -

I

Potential due to an Electric Dipole

* The electric potential of the dipole is Electric Potential Energy of a System
of Charged Particle
* For two particles at separation r:

1 pcosé 1
= . 4.4
X 2 = W= -,
4, d & 4me, r

Vv



