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Gauss’ law:

Given an arbitrary closed surface, the electric flux through 1t 1s
proportional to the charge enclosed by the surface.

Surface E 0




Example: Charged spherical ball, compute field as a function of r (including inside).

: q
Charge per unit volume: o =
gep Y 47 R
q
3
Inside the sphere: pick spherical Gaussian surface of
radius r. The amount of charge enclosed by the
surface 1S 4773 7
3 P = R3 q
2 qr ’ qr
Applying Gauss’ law: ® =4xr°E = ;oF = FE = dne R

Outside the sphere, pick a spherical Gaussian surface, the enclosed charge is q,

therefore again the field is the same as for a point charge q.
E




Faraday’s cage

Since electric fields must vanish inside conductors (even if they
are hollow), metal enclosures can effectively be used to shield
against electric fields.

Example:

Stations in car radios fade when driving through
suspension bridges. The cabling in the bridge 1s the “metal
enclosure”.



Example: a charged conducting spherical sheet with a charge inside

The presence of the central charge attracts electrons to
the inner surface of the metal sheet. How much charge
is there on the inner surface of the sheet?

Construct a spherical Gaussian surface inside the sheet.
Since it 1s a conductor, the field there vanishes.
Therefore the flux vanishes. By Gauss’ law, the enclosed

charge should be zero. Therefore the amount of charge
Charge of sheet : q, on the inner surface is -q.

Charge in the outside surface: construct a spherical Gaussian surface outside

the sheet. The enclosed charge is q +gs. The external field will be equal to
that of a point charge of value q+qgs.

Now, the external field is entirely due to the charge on the outside of the
sheet (since the field due to the inner surface cancelled with that of the

point charge). Therefore the amount of charge deposited on the outside
1s q+qs.



Planar symmetry:
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Applying Gauss' law, we have, Ao =2AE
€9

Solving for the electric field, we get | E = 9

B 2¢,

Construct a “pill box” (cylindrical)
Gaussian surface.

The surface encloses an amount
of charge equal to the area of the
cover of the cylinder times

the surface charge density, 40.

The flux of the electric field only
has contributions from the covers.

The flux is the same in both covers,
EA. Therefore the total flux is 2EA.

The result coincides with the
one we found (with great effort)
by taking the infinite radius limit
of a disk!



Planar symmetry: the case of conductors

In conductors, charges have to arrange themselves to
cancel the field in the interior. Therefore one has, even
for a thin plate, “double” the charge density than for

E E an insulator.

We now repeat the “pill box™
construction. Now, however, we
consider one cover of the cylinder

Yyvyy

in the interior of the conductor. ""1"55
The flux there is therefore zero, E

since there 1s no field. The total
flux 1s now AE. The charge enclosed (a) )
is still o 4.

Ao So there 1s a factor of 2
Applying Gauss' law, we have, T AE difference between the
0 fields of insulator
Solving for the electric field, we getl £ = gg and conducting infinite planes.
0




Two conducting Plates

Figure (a) shows a cross section of a thin,
infinite conducting plate with excess
positive charge. Figure (b) shows an
identical plate with excess negative charge
having the same magnitude of surface
charge density o1.

Suppose we arrange for the plates of Figs.
a and b to be close to each other and
parallel (¢). Since the plates are conductors,
when we bring them into this arrangement,
the excess charge on one plate attracts the
excess charge on the other plate, and all the
excess charge moves onto the inner faces
of the plates as in Fig.c. With twice as
much charge now on each inner face, the
electric field at any point between the
plates has the magnitude
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Insulating plates

Figure 23-17a shows portions of two large, parallel, non-
conducting sheets, each with a fixed uniform charge on one
side. The magnitudes of the surface charge densities are
o+ = 6.8 uC/m? for the positively charged sheet and oy, =
4.3 uC/m? for the negatively charged sheet.

Find the electric field E (a) to the left of the sheets,
(b) between the sheets, and (c) to the right of the sheets.

KEY IDEA

With the charges fixed in place (they are on nonconduc-
tors), we can find the electric field of the sheets in Fig. 23-17a
by (1) finding the field of each sheet as if that sheet were iso-
lated and (2) algebraically adding the fields of the isolated
sheets via the superposition principle. (We can add the fields
algebraically because they are parallel to each other.)

Calculations: At any point, the electric field E, ., due to
the positive sheet is directed away from the sheet and, from
Eq.23-13, has the magnitude

. =2 _ 6.8 X 10 ¢ C/m?
()7 2,  (2)(8.85 X 1072 C?N-m?)
= 3.84 X 105 N/C.

.
Fig. 23-17 (a) Two large, paral- G ‘e
lel sheets, uniformly charged on
one side. (b) The individual elec-
tric fields resulting from the two
charged sheets. (¢) The net field

due to both charged sheets, found

k\l c“nnrmc;ﬁnn

Similarly, at any point, the electric field E —y due to the negative
sheet is directed toward that sheet and has the magnitude

_ 9 _ 4.3 X 10 ° C/m?
2g (2)(8.85 X 1072 C¥N-m?)
= 2.43 X 10° N/C.
Figure 23-17b shows the fields set up by the sheets to the left of
the sheets (L), between them (B), and to their right (R).
The resultant fields in these three regions follow from the
superposition principle. To the left, the field magnitude is
E . =E.) - Ep

= 3.84 X 10° N/C — 2.43 X 10°N/C

= 1.4 X 10° N/C. (Answer)
Because E -, is larger than E_,, the net electric field E; in this
region is directed to the left, as Fig. 23-17¢ shows. To the right of
the sheets, the electric field has the same magnitude but is di-

rected to the right, as Fig.23-17¢ shows.
Between the sheets, the two fields add and we have

Ey = E(.) + E
= 3.84 X 10° N/C + 2.43 X 10°N/C
= 6.3 X 10° N/C. (Answer)
The electric field Ej is directed to the right.
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Cylindrical symmetry:

Consider an infinite wire of charge per unit length A.

We construct a cylindrical Gaussian surface of finite
Gaussian helght h

surface

The amount of charge enclosed is ZA.

The field points radially outwards, and 1s constant
along the surface of the cylinder. The covers give no
contribution to the flux. The total flux is the area of
the side of the cylinder times the field: ® =27rhE

Applying Gauss' law, we get : 2z rh E = A h, therefore we get for the field E = A

271

Again we reproduce easily a result we had arrived to with effort using
Coulomb’s law.



Everything together:

e Gauss’ law 1s &P = Gen

* the net flux of the electric
field through the surface:

cp—§ E-dA

Applications of Gauss’ Law
* surface of a charged conductor

E_U'

&o

* Within the surface E=0.

A
2megr

e line of charge E

* Infinite non-conducting sheet

o
E =
2e 0

* Outside a spherical shell of charge

* Inside a uniform spherical shell

E=10

* Inside a uniform sphere of charge

q
E = —|r.
( dme R’ ) 4




Summary

* In situations of high symmetry (planar,
spherical, cylindrical), Gauss’ law allows to
compute quantitatively the electric field in a
straightforward manner.

* It allows us to understand also
quantitatively behavior of charges in
conductors (very hard to study otherwise).



