## Formula Sheet for LSU Physics 2113, First Exam, Fall '14

- Constants, definitions:

$$
\begin{aligned}
& g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
& \boldsymbol{G}=\mathbf{6 . 6 7} \times 10^{-11} \frac{\mathrm{~m}^{3}}{\mathrm{~kg} \cdot \mathrm{~s}^{2}} \\
& R_{\text {Earth }}=6.37 \times 10^{6} \mathrm{~m} \\
& M_{\text {Earth }}=5.98 \times 10^{24} \mathrm{~kg} \\
& M_{\text {Sun }}=1.99 \times 10^{30} \mathrm{~kg} \\
& \epsilon_{o}=8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{Nm}^{2}} \\
& c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& \text { dipole moment: } \vec{p}=q \vec{d} \\
& \text { Area of a circle: } \boldsymbol{A}=\pi r^{2} \\
& \text { Area of a sphere: } A=4 \pi r^{2} \\
& \text { Earth-Sun distance }=1.50 \times 10^{11} \mathrm{~m} \\
& \text { Earth-Moon distance }=3.82 \times 10^{8} \mathrm{~m} \\
& e=1.60 \times 10^{-19} \mathrm{C} \\
& 1 \mathrm{eV}=\mathrm{e}(1 \mathrm{~V})=1.60 \times 10^{-19} \mathrm{~J} \\
& \text { charge densities: } \lambda=\frac{Q}{L}, \quad \sigma=\frac{Q}{A}, \quad \rho=\frac{Q}{V} \\
& \text { Volume of a sphere: } V=\frac{4}{3} \pi r^{3}
\end{aligned}
$$

## - Units:

Joule $=\mathrm{J}=\mathrm{N} \cdot \mathrm{m}$

- Kinematics (constant acceleration):

$$
v=v_{o}+a t \quad x-x_{o}=\frac{1}{2}\left(v_{o}+v\right) t \quad x-x_{o}=v_{o} t+\frac{1}{2} a t^{2} \quad v^{2}=v_{o}^{2}+2 a\left(x-x_{o}\right)
$$

- Circular motion:

$$
F_{c}=m a_{c}=\frac{m v^{2}}{r}, \quad T=\frac{2 \pi r}{v}, \quad v=\omega r
$$

- General (work, def. of potential energy, kinetic energy):
$K=\frac{1}{2} m v^{2}$
$\vec{F}_{\text {net }}=m \vec{a} \quad E_{\text {mech }}=K+U$
$\boldsymbol{W}=-\boldsymbol{\Delta} \boldsymbol{U}$ (by field) $\boldsymbol{W}_{\text {ext }}=\boldsymbol{\Delta} \boldsymbol{U}=-\boldsymbol{W}$ (if objects are initially and finally at rest)
- Gravity:

Newton's law: $|\overrightarrow{\boldsymbol{F}}|=\boldsymbol{G} \frac{\boldsymbol{m}_{\boldsymbol{1}} \boldsymbol{m}_{\boldsymbol{2}}}{\boldsymbol{r}^{\mathbf{2}}} \quad$ Gravitational acceleration (planet of mass $M$ ): $\boldsymbol{a}_{\boldsymbol{g}}=\frac{\boldsymbol{G M}}{\boldsymbol{r}^{\mathbf{2}}}$
Gravitational Field: $\vec{g}=-G \frac{r^{2}}{r^{2}} \hat{r}=-\frac{d V_{g}}{d r} \quad$ Gravitational potential: $V_{g}=-\frac{G M}{r}$
Law of periods: $T^{2}=\left(\frac{4 \pi^{2}}{G M}\right)^{r^{2}} r^{3} \quad$ Potential Energy: $U=-G \frac{m_{1} m_{2}}{r_{12}}$
Potential Energy of a System (more than 2 masses): $\quad U=-\left(G \frac{m_{1} m_{2}}{r_{12}}+G \frac{m_{1} m_{3}}{r_{13}}+G \frac{m_{2} m_{3}}{r_{23}}+\ldots\right)$
Gauss' law for gravity: $\oint_{S} \overrightarrow{\boldsymbol{g}} \cdot \boldsymbol{d} \boldsymbol{S}=-4 \pi G M_{\text {ins }}$

## - Electrostatics:

Coulomb's law: $|\overrightarrow{\boldsymbol{F}}|=\boldsymbol{k} \frac{\left|\boldsymbol{q}_{\mathbf{1}}\right|\left|\boldsymbol{q}_{\boldsymbol{2}}\right|}{\boldsymbol{r}^{\mathbf{2}}} \quad$ Force on a charge in an electric field: $\overrightarrow{\boldsymbol{F}}=\boldsymbol{q} \overrightarrow{\boldsymbol{E}}$
Electric field of a point charge: $|\overrightarrow{\boldsymbol{E}}|=\boldsymbol{k} \frac{|\boldsymbol{q}|}{\boldsymbol{r}^{2}}$
Electric field of a dipole on axis, far away from dipole: $\overrightarrow{\boldsymbol{E}}=\frac{\mathbf{2 k} \overrightarrow{\boldsymbol{p}}}{\boldsymbol{z}^{\mathbf{3}}}$
Electric field of an infinite line charge: $|\overrightarrow{\boldsymbol{E}}|=\frac{\mathbf{2 k} \boldsymbol{\lambda}}{\boldsymbol{r}_{\overrightarrow{\boldsymbol{A}}}}$
Torque on a dipole in an electric field: $\overrightarrow{\boldsymbol{\tau}}=\overrightarrow{\boldsymbol{p}} \times \overrightarrow{\boldsymbol{E}}$
Potential energy of a dipole in $\vec{E}$ field: $\boldsymbol{U}=-\overrightarrow{\boldsymbol{p}} \cdot \overrightarrow{\boldsymbol{E}}$

