Formula Sheet for LSU Physics 2113, First Exam, Fall '14

• Constants, definitions:

$$g = 9.8 \, {
m m \over s^2}$$
 $R_{Earth} = 6.37 \times 10^6 \, {
m m}$ $M_{Earth} = 5.98 \times 10^{24} \, {
m kg}$ $G = 6.67 \times 10^{-11} \, {
m m^3 \over {
m kg \cdot s^2}}$ $R_{Moon} = 1.74 \times 10^6 \, {
m m}$ Earth-Sun distance $= 1.50 \times 10^{11} \, {
m m}$ $M_{Sun} = 1.99 \times 10^{30} \, {
m kg}$ $M_{Moon} = 7.36 \times 10^{22} \, {
m kg}$ Earth-Moon distance $= 3.82 \times 10^8 \, {
m m}$ $\epsilon_o = 8.85 \times 10^{-12} \, {
m C^2 \over {
m Nm^2}}$ $k = {1 \over 4\pi\epsilon_o} = 8.99 \times 10^9 \, {
m Nm^2 \over {
m C^2}}$ $e = 1.60 \times 10^{-19} \, {
m C}$ $1 \, {
m eV} = {
m e}(1{
m V}) = 1.60 \times 10^{-19} \, {
m J}$ $2 \, {
m charge densities: } \lambda = {Q \over L}, \ \sigma = {Q \over A}, \ \rho = {Q \over V}$ $2 \, {
m Volume of a cylinder: } A = 2\pi r^2$ $2 \, {
m Volume of a cylinder: } V = \pi r^2 \, {
m Volume of a sphere: } V = {4 \over 3}\pi r^3$

• Units:

 $\mathbf{Joule} = \mathbf{J} = \mathbf{N} \cdot \mathbf{m}$

• Kinematics (constant acceleration):

Area of a cylinder: $A = 2\pi r \ell$

$$v = v_o + at$$
 $x - x_o = \frac{1}{2}(v_o + v)t$ $x - x_o = v_o t + \frac{1}{2}at^2$ $v^2 = v_o^2 + 2a(x - x_o)$

Volume of a cylinder: $V = \pi r^2 \ell$

• Circular motion:

$$F_c=ma_c=rac{mv^2}{r},~~T=rac{2\pi r}{v},~~v=\omega r$$

• General (work, def. of potential energy, kinetic energy):

$$K=rac{1}{2}mv^2$$
 $ec{F}_{
m net}=mec{a}$ $E_{
m mech}=K+U$ $W=-\Delta U$ (by field) $W_{ext}=\Delta U=-W$ (if objects are initially and finally at rest)

• Gravity:

Newton's law:
$$|\vec{F}| = G \frac{m_1 m_2}{r^2}$$
 Gravitational acceleration (planet of mass M): $a_g = \frac{GM}{r^2}$ Gravitational Field: $\vec{g} = -G \frac{M}{r^2} \hat{r} = -\frac{dV_g}{dr}$ Gravitational potential: $V_g = -\frac{GM}{r}$ Law of periods: $T^2 = \left(\frac{4\pi^2}{GM}\right)r^3$ Potential Energy: $U = -G \frac{m_1 m_2}{r_{12}}$ Potential Energy of a System (more than 2 masses): $U = -\left(G \frac{m_1 m_2}{r_{12}} + G \frac{m_1 m_3}{r_{13}} + G \frac{m_2 m_3}{r_{23}} + ...\right)$ Gauss' law for gravity: $\oint_G \vec{g} \cdot d\vec{S} = -4\pi G M_{ins}$

• Electrostatics:

Coulomb's law:
$$|\vec{F}| = k \frac{|q_1| |q_2|}{r^2}$$
 Force on a charge in an electric field: $\vec{F} = q\vec{E}$ Electric field of a point charge: $|\vec{E}| = k \frac{|q|}{r^2}$ Electric field of a dipole on axis, far away from dipole: $\vec{E} = \frac{2k\vec{p}}{z^3}$

Electric field of a dipole on axis, far away from dipole:
$$\vec{E} = \frac{2kp}{z^3}$$

Electric field of an infinite line charge:
$$|\vec{E}| = \frac{2k\lambda}{r_{
ightharpoonup}}$$

Torque on a dipole in an electric field:
$$\vec{ au} = \vec{p} \times \vec{E}$$

Potential energy of a dipole in
$$\vec{E}$$
 field: $U = -\vec{p} \cdot \vec{E}$