Formula Sheet for LSU Physics 2113, Second Exam, Fall '14

• Constants, definitions:

$$g = 9.8 \, {
m m \over s^2}$$
 $R_{Earth} = 6.37 imes 10^6 \, {
m m}$ $M_{Earth} = 5.98 imes 10^{24} \, {
m kg}$ $G = 6.67 imes 10^{-11} \, {
m m^3 \over {
m kg \cdot s^2}}$ $R_{Moon} = 1.74 imes 10^6 \, {
m m}$ Earth-Sun distance $= 1.50 imes 10^{11} \, {
m m}$ $M_{Sun} = 1.99 imes 10^{30} \, {
m kg}$ $M_{Moon} = 7.36 imes 10^{22} \, {
m kg}$ Earth-Moon distance $= 3.82 imes 10^8 \, {
m m}$ $\epsilon_o = 8.85 imes 10^{-12} \, {
m C^2 \over {
m Nm^2}}$ $k = {1 \over 4\pi\epsilon_o} = 8.99 imes 10^9 \, {
m Nm^2 \over {
m C^2}}$ $e = 1.60 imes 10^{-19} \, {
m C}$ $\epsilon = 3.00 imes 10^8 \, {
m m/s}$ $m_p = 1.67 imes 10^{-27} \, {
m kg}$ $m_p = 1.67 imes 10^{-31} \, {
m kg}$ $m_p = 1.67 imes 10^{-31} \, {
m kg}$ $m_p = 1.67 imes 10^{-31} \, {
m kg}$ $m_p = 1.67 imes 10^{-31} \, {
m kg}$ $m_p = 1.67 imes 10^{-31} \, {
m kg}$ $m_p = 1.67 imes 10^{-31} \, {
m kg}$ $m_p = 1.67 imes 10^{-31} \, {
m kg}$ $m_p = 1.67 imes 10^{-31} \, {
m kg}$ $m_p = 1.67 imes 10^{-31} \, {
m kg}$ $m_p = 1.67 imes 10^{-31} \, {
m kg}$ $m_p = 1.67 imes 10^{-31} \, {
m kg}$ $m_p = 1.67 imes 10^{-31} \, {
m kg}$ $m_p = 1.67 imes 10^{-31} \, {
m kg}$ $m_p = 1.67 imes 10^{-31} \, {
m kg}$ $m_p = 1.67 imes 10^{-31} \, {
m kg}$ $m_p = 1.67 imes 10^{-31} \, {
m kg}$ $m_p = 1.67 imes 10^{-31} \, {
m kg}$ $m_p = 1.67 imes 10^{-31} \, {
m kg}$ $m_p = 1.67 imes 10^{-31} \, {
m kg}$ $m_p = 1.67 imes 10^{-31} \, {
m kg}$ $m_p = 1.67 imes 10^{-31} \, {
m kg}$ $m_p = 1.67 imes 10^{-31} \, {
m kg}$ $m_p = 1.67 imes 10^{-31} \, {
m kg}$ $m_p = 1.67 imes 10^{-31} \, {
m kg}$ $m_p = 1.67 imes 10^{-31} \, {
m kg}$ $m_p = 1.67 imes 10^{-31} \, {
m kg}$ $m_p = 1.67 imes 10^{-31} \, {
m kg}$ $m_p = 1.67 imes 10^{-31} \, {
m kg}$ $m_p = 1.67 imes 10^{-31} \, {
m kg}$ $m_p = 1.67 imes 10^{-31} \, {
m kg}$ $m_p = 1.67 imes 10^{-31} \, {
m kg}$ $m_p = 1.67 imes 10^{-31} \, {
m kg}$ $m_p = 1.67 imes 10^{-31} \, {
m kg}$ $m_p = 1.67 imes 10^{-31} \, {
m kg}$ $m_p = 1.67 imes 10^{-31} \, {
m kg}$ $m_p = 1.67 imes 10^{-31} \, {
m kg}$ $m_p = 1.67 imes 10^{-31} \, {
m kg}$ $m_p = 1.67 imes 10^{-31} \, {
m kg}$ m_p

• Units:

 $\mathbf{Joule} = \mathbf{J} = \mathbf{N} \cdot \mathbf{m}$

• Kinematics (constant acceleration):

Area of a cylinder: $A = 2\pi r \ell$

$$v = v_o + at$$
 $x - x_o = \frac{1}{2}(v_o + v)t$ $x - x_o = v_o t + \frac{1}{2}at^2$ $v^2 = v_o^2 + 2a(x - x_o)$

Volume of a cylinder: $V = \pi r^2 \ell$

• Circular motion:

$$F_c=ma_c=rac{mv^2}{r},~~T=rac{2\pi r}{v},~~v=\omega r$$

• General (work, def. of potential energy, kinetic energy):

$$K=rac{1}{2}mv^2$$
 $ec{F}_{
m net}=mec{a}$ $E_{
m mech}=K+U$ $W=-\Delta U$ (by field) $W_{ext}=\Delta U=-W$ (if objects are initially and finally at rest)

• Gravity:

Newton's law:
$$|\vec{F}| = G \frac{m_1 m_2}{r^2}$$
 Gravitational acceleration (planet of mass M): $a_g = \frac{GM}{r^2}$ Gravitational Field: $\vec{g} = -G \frac{M}{r^2} \hat{r} = -\frac{dV_g}{dr}$ Gravitational potential: $V_g = -\frac{GM}{r}$ Law of periods: $T^2 = \left(\frac{4\pi^2}{GM}\right)r^3$ Potential Energy: $U = -G \frac{m_1 m_2}{r_{12}}$ Potential Energy of a System (more than 2 masses): $U = -\left(G \frac{m_1 m_2}{r_{12}} + G \frac{m_1 m_3}{r_{13}} + G \frac{m_2 m_3}{r_{23}} + \ldots\right)$ Gauss' law for gravity: $\oint_G \vec{g} \cdot d\vec{S} = -4\pi G M_{ins}$

• Electrostatics:

Coulomb's law:
$$|\vec{F}| = k \frac{|q_1| |q_2|}{r^2}$$
 Force on a charge in an electric field: $\vec{F} = q\vec{E}$ Electric field of a point charge: $|\vec{E}| = k \frac{|q|}{r^2}$ Electric field of a dipole on axis, far away from dipole: $\vec{E} = \frac{2k\vec{p}}{r^3}$

Electric field of a dipole on axis, far away from dipole:
$$\vec{E}=rac{2k\mu}{z^3}$$

Electric field of an infinite line charge:
$$|\vec{E}| = \frac{2k\lambda}{r}$$

Torque on a dipole in an electric field:
$$\vec{ au} = \vec{p} \times \vec{E}$$

Potential energy of a dipole in
$$\vec{E}$$
 field: $U = -\vec{p} \cdot \vec{E}$

$$\bullet$$
 Electric flux: $\Phi = \int \vec{E} \cdot d\vec{A}$

$$ullet$$
 Gauss' law: $\epsilon_o \oint ec{E} \cdot dec{A} = q_{enc}$

• Electric field of an infinite non-conducting plane with a charge density
$$\sigma$$
: $E=rac{\sigma}{2\epsilon_o}$

• Electric field of infinite conducting plane or close to the surface of a conductor:
$$E = \frac{\sigma}{\epsilon_o}$$

$$V_f - V_i = -\int_i^f \vec{E} \cdot d\vec{s}$$
 In a uniform field: $\Delta V = -\vec{E} \cdot \Delta \vec{s} = -Ed\cos\theta$ $\vec{E} = -\vec{\nabla}V, \quad E_x = -\frac{\partial V}{\partial x}, \quad E_y = -\frac{\partial V}{\partial y}, \quad E_z = -\frac{\partial V}{\partial z}$ Potential of a point charge q : $V = k \frac{q}{r}$ Potential of n point charges: $V = \sum_{i=1}^n V_i = k \sum_{i=1}^n \frac{q_i}{r_i}$ Electric potential energy: $\Delta U = q\Delta V \quad \Delta U = -W_{\rm field}$

Potential energy of two point charges: $U_{12} = W_{\text{ext}} = q_2 V_1 = q_1 V_2 = k \frac{q_1 q_2}{r_{12}}$

• Capacitance: definition:
$$q = CV$$

Capacitor with a dielectric:
$$C = \kappa C_{air}$$

Parallel plate:
$$C=arepsilon_orac{A}{d}$$
 asity of electric field: $u=rac{1}{2}\kappaarepsilon_o|ec E|^2$ Capacitors in series: $rac{1}{C_{ea}}=\sumrac{1}{C_i}$

Potential Energy in Cap: $U = \frac{q^2}{2C} = \frac{1}{2}qV = \frac{1}{2}CV^2$ Energy density of electric field: $u = \frac{1}{2}\kappa\varepsilon_o |\vec{E}|^2$ Capacitors in parallel: $C_{eq} = \sum C_i$

$$ullet$$
 Current: $i=rac{dq}{dt}=\int ec{J}\cdot dec{A}$, Const. curr. density: $J=rac{i}{A}$, Charge carrier's drift speed: $ec{v}_d=rac{ec{J}}{ne}$

Definition of resistance:
$$R = \frac{V}{i}$$

 Definition of resistivity: $\rho = \frac{|\vec{E}|}{|\vec{J}|}$

• Resistance in a conducting wire:
$$R=
ho rac{L}{A}$$
 Temperature dependence: $ho-
ho_\circ=
ho_\circ lpha(T-T_\circ)$

• Power in an electrical device:
$$P = iV$$

Power dissipated in a resistor:
$$P = i^2 R = \frac{V^2}{R}$$