Formula Sheet for LSU Physics 2113, Final Exam, Fall '14

- Constants, definitions:

$$
\begin{aligned}
& g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
& \boldsymbol{G}=\mathbf{6 . 6 7} \times 10^{-11} \frac{\mathrm{~m}^{3}}{\mathrm{~kg} \cdot \mathrm{~s}^{2}} \\
& M_{\text {Sun }}=1.99 \times 10^{30} \mathrm{~kg} \\
& \epsilon_{o}=8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{Nm}^{2}} \\
& c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& \text { dipole moment: } \vec{p}=q \vec{d} \\
& \text { Area of a circle: } A=\pi r^{2} \\
& R_{\text {Earth }}=6.37 \times 10^{6} \mathrm{~m} \\
& M_{\text {Earth }}=5.98 \times 10^{24} \mathrm{~kg} \\
& R_{\text {Moon }}=1.74 \times 10^{6} \mathrm{~m} \\
& \text { Earth-Sun distance }=1.50 \times 10^{11} \mathrm{~m} \\
& M_{\text {Moon }}=7.36 \times 10^{22} \mathrm{~kg} \\
& \text { Earth-Moon distance }=3.82 \times 10^{8} \mathrm{~m} \\
& k=\frac{1}{4 \pi \epsilon_{o}}=8.99 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}} \\
& e=1.60 \times 10^{-19} \mathrm{C} \\
& m_{p}=1.67 \times 10-27 \mathrm{~kg} \\
& m_{e}=9.11 \times 10^{-31} \mathrm{~kg} \\
& \text { Area of a sphere: } A=4 \pi r^{2} \\
& 1 \mathrm{eV}=\mathrm{e}(1 \mathrm{~V})=1.60 \times 10^{-19} \mathrm{~J} \\
& \text { charge densities: } \lambda=\frac{Q}{L}, \sigma=\frac{Q}{A}, \quad \rho=\frac{Q}{V} \\
& \text { Area of a cylinder: } A=2 \pi r \ell \\
& \text { Volume of a cylinder: } V=\pi r^{2} \ell
\end{aligned}
$$

- Units:

Joule $=\mathrm{J}=\mathrm{N} \cdot \mathrm{m}$

- Kinematics (constant acceleration):

$$
v=v_{o}+a t \quad x-x_{o}=\frac{1}{2}\left(v_{o}+v\right) t \quad x-x_{o}=v_{o} t+\frac{1}{2} a t^{2} \quad v^{2}=v_{o}^{2}+2 a\left(x-x_{o}\right)
$$

- Circular motion:

$$
F_{c}=m a_{c}=\frac{m v^{2}}{r}, \quad T=\frac{2 \pi r}{v}, \quad v=\omega r
$$

- General (work, def. of potential energy, kinetic energy):
$K=\frac{1}{2} m v^{2}$
$\vec{F}_{\text {net }}=m \vec{a}$
$\boldsymbol{E}_{\text {mech }}=\boldsymbol{K}+\boldsymbol{U}$
$\boldsymbol{W}=-\boldsymbol{\Delta} \boldsymbol{U}$ (by field) $\boldsymbol{W}_{\text {ext }}=\boldsymbol{\Delta} \boldsymbol{U}=-\boldsymbol{W}$ (if objects are initially and finally at rest)
- Gravity:

Newton's law: $|\overrightarrow{\boldsymbol{F}}|=\boldsymbol{G} \frac{\boldsymbol{m}_{\mathbf{1}} \boldsymbol{m}_{\mathbf{2}}}{\boldsymbol{r}^{\mathbf{2}}} \quad$ Gravitational acceleration (planet of mass M): $\boldsymbol{a}_{\boldsymbol{g}}=\frac{\boldsymbol{G M}}{\boldsymbol{r}^{\mathbf{2}}}$
Gravitational Field: $\vec{g}=-G \frac{r^{2}}{r^{2}} \hat{r}=-\frac{d V_{g}}{d r} \quad$ Gravitational potential: $V_{g}=-\frac{G M}{r}$
Law of periods: $T^{2}=\left(\frac{4 \pi^{2}}{G M}\right)^{r^{2}} r^{3} \quad$ Potential Energy: $U=-G \frac{m_{1} m_{2}^{r}}{r_{12}}$
Potential Energy of a System (more than 2 masses): $\quad U=-\left(G \frac{m_{1} m_{2}}{r_{12}}+G \frac{m_{1} m_{3}}{r_{13}}+G \frac{m_{2} m_{3}}{r_{23}}+\ldots\right)$
Gauss' law for gravity: $\oint_{S} \overrightarrow{\boldsymbol{g}} \cdot \boldsymbol{d} \overrightarrow{\boldsymbol{S}}=-\mathbf{4} \boldsymbol{\pi} \boldsymbol{M}_{\text {ins }}$

- Electrostatics:

Coulomb's law: $|\overrightarrow{\boldsymbol{F}}|=\boldsymbol{k} \frac{\left|\boldsymbol{q}_{\mathbf{1}}\right|\left|\boldsymbol{q}_{\boldsymbol{2}}\right|}{\boldsymbol{r}^{\mathbf{2}}} \quad$ Force on a charge in an electric field: $\overrightarrow{\boldsymbol{F}}=\boldsymbol{q} \overrightarrow{\boldsymbol{E}}$
Electric field of a point charge: $|\overrightarrow{\boldsymbol{E}}|=\boldsymbol{k} \frac{|\boldsymbol{q}|}{\boldsymbol{r}^{2}}$
Electric field of a dipole on axis, far away from dipole: $\overrightarrow{\boldsymbol{E}}=\frac{\mathbf{2 k} \overrightarrow{\boldsymbol{p}}}{\boldsymbol{z}^{\mathbf{3}}}$
Electric field of an infinite line charge: $|\overrightarrow{\boldsymbol{E}}|=\frac{\boldsymbol{2 k} \boldsymbol{\lambda}}{\boldsymbol{r}}$
Torque on a dipole in an electric field: $\overrightarrow{\boldsymbol{\tau}}=\overrightarrow{\boldsymbol{p}} \times \overrightarrow{\boldsymbol{E}}$
Potential energy of a dipole in \vec{E} field: $\boldsymbol{U}=-\overrightarrow{\boldsymbol{p}} \cdot \overrightarrow{\boldsymbol{E}}$

- Electric flux: $\Phi=\int \vec{E} \cdot d \vec{A}$
- Gauss' law: $\epsilon_{o} \oint \vec{E} \cdot d \vec{A}=q_{e n c}$
- Electric field of an infinite non-conducting plane with a charge density $\sigma: E=\frac{\sigma}{2 \epsilon_{o}}$
- Electric field of infinite conducting plane or close to the surface of a conductor: $E=\frac{\sigma}{\epsilon_{o}}$
- Electric potential, potential energy, and work:
$V_{f}-V_{i}=-\int_{i}^{f} \vec{E} \cdot d \vec{s} \quad$ In a uniform field: $\Delta V=-\vec{E} \cdot \Delta \vec{s}=-E d \cos \theta$
$\vec{E}=-\vec{\nabla} V, \quad E_{x}=-\frac{\partial V}{\partial x}, \quad E_{y}=-\frac{\partial V}{\partial y}, \quad E_{z}=-\frac{\partial V}{\partial z}$
Potential of a point charge $q: V=k \frac{q}{r} \quad$ Potential of n point charges: $V=\sum_{i=1}^{n} V_{i}=k \sum_{i=1}^{n} \frac{q_{i}}{r_{i}}$
Electric potential energy: $\Delta U=q \Delta V \quad \Delta U=-W_{\text {field }}$
Potential energy of two point charges: $U_{12}=W_{\mathrm{ext}}=q_{2} V_{1}=q_{1} V_{2}=k \frac{q_{1} q_{2}}{r_{12}}$
- Capacitance: definition: $q=C V$

Capacitor with a dielectric: $C=\kappa C_{a i r}$
Potential Energy in Cap: $U=\frac{q^{2}}{2 C}=\frac{1}{2} q V=\frac{1}{2} C V^{2}$
Capacitors in parallel: $C_{e q}=\sum C_{i}$

Parallel plate: $C=\varepsilon_{\circ} \frac{A}{d}$
Energy density of electric field: $u=\frac{1}{2} \kappa \varepsilon_{o}|\vec{E}|^{2}$ Capacitors in series: $\frac{1}{C_{e q}}=\sum \frac{1}{C_{i}}$

- Current: $i=\frac{d q}{d t}=\int \vec{J} \cdot d \vec{A}$, Const. curr. density: $J=\frac{i}{A}$, Charge carrier's drift speed: $\vec{v}_{d}=\frac{\vec{J}}{n e}$
- Definition of resistance: $R=\frac{V}{i} \quad$ Definition of resistivity: $\rho=\frac{|\vec{E}|}{|\vec{J}|}$
- Resistance in a conducting wire: $R=\rho \frac{L}{A}$

Temperature dependence: $\rho-\rho_{\circ}=\rho_{\circ} \alpha\left(T-T_{\circ}\right)$

- Power in an electrical device: $P=i V$

Power dissipated in a resistor: $P=i^{2} R=\frac{V^{2}}{R}$

- Definition of $e m f: \mathcal{E}=\frac{d \boldsymbol{W}}{d \boldsymbol{q}}$
- Resistors in series: $R_{e q}=\sum R_{i} \quad \quad$ Resistors in parallel: $\frac{1}{R_{e q}}=\sum \frac{1}{R_{i}}$
- Loop rule in DC circuits: the sum of changes in potential across any closed loop of a circuit must be zero.
- Junction rule in DC circuits: the sum of currents entering any junction must be equal to the sum of currents leaving that junction.
- RC circuit: Charging: $q(t)=C \mathcal{E}\left(1-e^{-\frac{t}{\tau_{c}}}\right)$, Time constant $\tau_{C}=R C$, Discharging: $\boldsymbol{q}(t)=q_{o} e^{-\frac{t}{\tau_{c}}}$
- Magnetic Fields:

Magnetic force on a charge $\mathrm{q}: \vec{F}=q \vec{v} \times \vec{B} \quad$ Lorentz force: $\vec{F}=q \vec{E}+q \vec{v} \times \vec{B}$
Hall voltage: $\boldsymbol{V}=\boldsymbol{v}_{\boldsymbol{d}} \boldsymbol{B} \boldsymbol{d}=\frac{\boldsymbol{i}}{\boldsymbol{n l e}} \boldsymbol{B} \quad d=$ width \perp to field and $i, \quad l=$ thickness $\|$ to field and \perp to i

Circular motion in a magnetic field: $q v_{\perp} B=\frac{m v_{\perp}^{2}}{r}$
with period: $T=\frac{2 \pi m}{q B}$
Magnetic force on a length of wire: $\vec{F}=i \vec{L} \times \vec{B}$
Magnetic Dipole: $\vec{\mu}=N i \vec{A} \quad$ Torque: $\vec{\tau}=\vec{\mu} \times \vec{B} \quad$ Potential energy: $U=-\vec{\mu} \cdot \vec{B}$

- Generating Magnetic Fields: $\left(\mu_{0}=4 \pi \times 10^{-7} \frac{\mathrm{~T} \cdot \mathrm{~m}}{\mathrm{~A}}\right)$

Biot-Savart Law: $d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{i d \vec{s} \times \vec{r}}{r^{3}}$
Magnetic field of a long straight wire: $B=\frac{\mu_{0}}{4 \pi} \frac{2 i}{r} \quad$ Magnetic field of a circular arc: $B=\frac{\mu_{0}}{4 \pi} \frac{i}{r} \phi$
Force between parallel current carrying wires: $F_{a b}=\frac{\mu_{0} i_{a} i_{b}}{2 \pi d} L$
Ampere's law: $\oint \vec{B} \cdot d \vec{s}=\mu_{0} i_{e n c} \quad \quad$ Magnetic field of a solenoid: $B=\mu_{0} i n$
Magnetic field of a toroid: $B=\frac{\mu_{0} i N}{2 \pi r}, \quad$ Magnetic field of a dipole on axis, far away: $\vec{B}=\frac{\mu_{0}}{2 \pi} \frac{\vec{\mu}}{z^{3}}$

- Induction:

Magnetic Flux: $\Phi=\int \vec{B} \cdot d \vec{A}$
Faraday's law: $\mathcal{E}=-\frac{d \Phi}{d t}\left(=-N \frac{d \Phi}{d t}\right.$ for a coil with N turns $)$
Motional emf: $\mathcal{E}=B L v$
Induced Electric Field: $\oint \overrightarrow{\boldsymbol{E}} \cdot d \vec{s}=-\frac{d \Phi}{d t}$
Definition of Self-Inductance: $L=\frac{N \Phi}{i}$ Inductance of a solenoid: $L=\mu_{0} n^{2} A l$

EMF (Voltage) across an inductor: $\mathcal{E}=-L \frac{d i}{d t}$
RL Circuit: Rise of current: $i=\frac{\mathcal{E}}{\boldsymbol{R}}\left(1-e^{-\frac{t R}{L}}\right)$, Time constant: $\tau_{L}=\frac{L}{\boldsymbol{R}}$, Decay of current: $i=i_{0} e^{-\frac{t R}{L}}$
Magnetic Energy: $U_{B}=\frac{1}{2} L i^{2} \quad$ Magnetic energy density: $u_{B}=\frac{B^{2}}{2 \mu_{0}}$

- LC circuits:

Electric energy in a capacitor: $U_{E}=\frac{q^{2}}{2 C}=\frac{C V^{2}}{2} \quad$ Magnetic energy in an inductor: $U_{B}=\frac{L i^{2}}{2}$ LC circuit oscillations: $q=Q \cos (\omega t+\phi) \quad\left(i=\frac{d q}{d t}, \quad q=C v\right) \quad \omega=\frac{1}{\sqrt{L C}} \quad T=\frac{2 \pi}{\omega} \quad f=\frac{1}{T}$

- Series RLC circuit: $q(t)=Q e^{-R t /(2 L)} \cos \left(\omega^{\prime} t+\phi\right) \quad$ where $\quad \omega^{\prime}=\sqrt{\omega^{2}-\left(\frac{R}{2 L}\right)^{2}}$
- Transformers:

Transformation of voltage: $\frac{V_{s}}{V_{p}}=\frac{N_{s}}{N_{p}} \quad$ Turns ratio: $\frac{N_{p}}{N_{s}} \quad$ Energy conservation: $I_{p} V_{p}=I_{s} V_{s}$

- Maxwell's Equations:
$\oint \vec{E} \cdot d \vec{A}=\frac{q_{e n c}}{\epsilon_{0}} \quad \oint \vec{B} \cdot d \vec{A}=0 \quad \oint \vec{E} \cdot d \vec{s}=-\frac{d \Phi_{B}}{d t} \quad \oint \vec{B} \cdot d \vec{s}=\mu_{0} \epsilon_{0} \frac{d \Phi_{E}}{d t}+\mu_{0} i_{e n c}$

Displacement current: $i_{d}=\epsilon_{0} \frac{d \Phi_{E}}{d t}$
Magnetization: $\vec{M}=\frac{\vec{\mu}}{\text { volume }}$

- Electromagnetic Waves:

Wave traveling in +x direction: $E=E_{m} \sin (k x-\omega t) \quad B=B_{m} \sin (k x-\omega t)$
where $\overrightarrow{\boldsymbol{E}} \perp \overrightarrow{\boldsymbol{B}}, \quad$ the direction of travel is $\overrightarrow{\boldsymbol{E}} \times \overrightarrow{\boldsymbol{B}}, \quad \boldsymbol{E}_{m} / \boldsymbol{B}_{m}=c, \quad f \boldsymbol{\lambda}=c, \quad \lambda=2 \pi / k$
Velocity of light in vacuum $=c=\frac{1}{\sqrt{\mu_{0} \epsilon_{0}}}$
Energy flow: $\vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B} \quad I=\frac{1}{2 c \mu_{0}} E_{m}^{2} \quad E_{r m s}=\frac{E_{m}}{\sqrt{2}} \quad I=\frac{P}{\text { Area }}$
Radiation force and pressure: total absorption: $\boldsymbol{F}_{r}=\frac{\boldsymbol{I A}}{\boldsymbol{c}}, \boldsymbol{p}_{r}=\frac{\boldsymbol{I}}{\boldsymbol{c}}$ total reflection: $\boldsymbol{F}_{r}=\frac{2 \boldsymbol{I I A}}{c}, p_{r}=\frac{2 I}{c}$

- Polarizing Sheets:

Unpolarized \rightarrow polarized: $I=\frac{1}{2} I_{0} \quad$ Polarized \rightarrow polarized: $I=I_{0} \cos ^{2} \theta$

- Reflection/refraction:

Law of reflection: $\theta_{i}=\theta_{r} \quad$ Law of refraction: $n_{2} \sin \theta_{2}=n_{1} \sin \theta_{1}$
Total internal reflection (critical angle): $\theta_{c}=\sin ^{-1} \frac{n_{2}}{n_{1}}$
Polarization by reflection (Brewster's angle): $\theta_{B}=\tan ^{-1} \frac{n_{2}}{n_{1}}$

