
PHYS527 

Lecture 2: Calculus

• Numerical differentiation, central • Numerical differentiation, central 

differences.

• Numerical integration:

-Rules

-Richardson’s extrapolation

-Improper integrals



Numerical differentiation:

The first topic we will discuss is how to handle derivatives numerically.

We will assume that functions are represented in the computer as

a table of pairs of numbers representing points of space xn in one of the 

entries and f(xn) as the other entry. Recalling the definition of a 

derivative as the incremental quotient,
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One is tempted to just represent numerically the derivative as,
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One can however, with the same computational cost, write better

approximations to the derivative, and they are based on a simple

observation: the above expression is a better approximation to the

derivative at the midpoint of xn and xn+1 than at each point.



To see this, let us consider the Taylor expansion
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That is, just by shifting the point where we are computing the 

derivative we gain a whole order in h with the same number of 

computations. This condenses the essence of differential calculus

on a computer: use “centered” or “balanced” expressions for better

results.

If you want higher accuracy you need to  compute the function at

more points,
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And similar expressions for higher accuracies.

Should one go for higher accuracy? That largely depends on how

expensive it is to compute the function. It is quite usual in physics

to stick with second-order accuracy. 



It is immediate to generalize all this for higher derivatives, for 

instance,
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And again, “symmetry” is crucial to good accuracy.

All these expressions are also true for partial derivatives. Functions

of several variables are represented as a table with several entries,of several variables are represented as a table with several entries,

listing xn,yn,…,f(xn,yn,…). We just have to repeat all above 

expressions variable by variable.

There are tables that give various approximations to derivatives,

for instance in Abramowitz and Stegun.



One has to be careful with round-off error when computing derivatives.

Normally this translates in not being too greedy with the value of h.

That is, one has to make sure that x+h and x are numbers properly 

resolved when round error is taken into account. In practice this implies

that h should not be too smaller than 10-4 or so than x.



Numerical integration:

To compute the integral ∫
b
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One then approximates the integrals in the various intervals by 

approximating f(x) in the interval by an easy-to-integrate function.

The simplest example is the trapezoidal rule,
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To get a better formula, let us draw on our knowledge about 

discretized derivatives and write,
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Integrating, we get
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Simpson’s rule



If we now extend the above formulas to the whole domain of

integration we get,
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Another way of getting higher order closed formulae and estimate 

errors:

Euler-MacLaurin formula:
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And B(x)’s are the extended Bernoulli’s numbers,
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Sketch of proof:
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The point of this formula is, however, very simple: the errors in the 

extended trapezoidal rule are even powers of h.

Therefore if I approximate an integral using N steps and obtain SN,

if I then go and approximate using 2N steps and obtain S2N, the 

error in the latter approximation will be exactly 1/4 of the error in the

first approximation. Therefore if I consider the combination,
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It will cancel out the leading error contribution. The surviving error

is of order 1/N4, exactly as in Simpson’s rule. In fact, this approximation

IS Simpson’s rule, complete with the alternating 2/3 and 4/3 coefficients!

The neat way of viewing it in this perspective is that one clearly sees

how would one go about generating higher order rules. And for the

coefficients one needs Bernoulli’s numbers.



Richardson’s extrapolation:

The previous result is just an example (in the context of integration)

of a powerful numerical technique known as Richardson’s extrapolation.

The gist of the technique is the following: if I know in detail how the

leading error of a calculation depends on my discretization, I can 

cancel out such leading error by linear combination (or “extrapolation”)

of calculations with different values of the discretization parameter.

(“Archimedes the numerical analyst” 200BC

G. Phillips Am. Math. Mon. 88, 165 (1981))

To put it a different way, any time I compute something using a

discretization technique dependent on a parameter h, up to an

error of O(hn), if I repeat the calculation for various values of h,

I can “extrapolate” what the result would be in the limit h->0, which

is what I want. The “extrapolation” will be better the more points

I use to extrapolate,
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The quite widely used Romberg integration algorithm just consists

of applying k times the trapezoid rule and then perform a 

Richardson extrapolation,

subroutine qromb(func,a,b,ss)

parameter(eps=1.e-6,jmax=20,jmaxp=jmax+1,k=5,km=4)

dimension s(jmaxp),h(jmaxp)

h(1)=1.

do 11 j=1,jmax

call trapzd(func,a,b,s(j),j)

if (j.ge.k) then

l=j-km

call polint(h(l),s(l),k,0.,ss,dss)call polint(h(l),s(l),k,0.,ss,dss)

if (abs(dss).lt.eps*abs(ss)) return

endif

s(j+1)=s(j)

h(j+1)=0.25*h(j)

11    continue

pause 'too many steps.'

end

(implementation of Numerical Recipes)



Order vs. accuracy:

Should one go for the highest order method?

One should not get carried away. High order only translates itself into

high accuracy if the function is “smooth enough” (it is well

approximated by polynomials). 

An extreme example would be to use a very high accuracy formulaAn extreme example would be to use a very high accuracy formula

and try to get the integral evaluating the function at one point!

Clearly this will work if the function is approximately constant.

If the features of your function are not properly resolved by the

spacing chosen, no high order in 1/N will fix it.



Improper integrals:

• Integrand cannot be evaluated at one of the end-points, or at some

mid-point (perhaps unknown).

• Integrand blows up at one of the end-points or at some mid-point.

• One (or both) of the integration limits is infinite.

One should distinguish improper from impossible. In all the aboveOne should distinguish improper from impossible. In all the above

cases we are assuming that in spite of the apparent problem the 

integral exists. If the integral diverges, no numerical technique will

cure it!



When the integrand blows up at one (or both) endpoints, but the 

integral is finite, the obvious answer is to obtain a formula for the

integral that avoids evaluating the function at such points.  For 

instance,
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There are many such formulas, including ones that work for higherThere are many such formulas, including ones that work for higher

orders. How does one derive them? Write the right hand side as a 

linear polynomial in fi with unknown coefficients. Then evaluate

the formula for x, x2, x3, etc. and form a system of linear equations.



There does exist an Euler-MacLaurin theorem for open formulas,

based on the “midpoint rule”,
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And therefore one can Richardson-extrapolate and arrive at a

Romberg formula for improper integrals of this kind.



Another obvious way to deal with an improper integral is to convert

it to a proper one via a change of variables. Typical example is to map

an infinite domain of integration into a finite one. 

Example:
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Which can be used for a>0 and b going to infinity or a going to

minus infinity and b<0. (Otherwise you break it up into multiple

integrals).



subroutine midinf(funk,aa,bb,s,n)

func(x)=funk(1./x)/x**2

b=1./aa

a=1./bb

if (n.eq.1) then

s=(b-a)*func(0.5*(a+b))

it=1

else

it=3**(n-2)

tnm=it

del=(b-a)/(3.*tnm)

ddel=del+del

From 

Numerical

Recipes

ddel=del+del

x=a+0.5*del

sum=0.

do 11 j=1,it

sum=sum+func(x)

x=x+ddel

sum=sum+func(x)

x=x+del

11      continue

s=(s+(b-a)*sum/tnm)/3.

it=3*it

endif

return



When mapping an infinite domain of integration into a finite one,

a concern that might appear is the following: one is considering

the function at equally spaced intervals in the mapped domain.

If one translates back into the original domain, as one approaches

the limit of the domain the intervals between evaluations of functions

become larger and larger. 

To get a handle on this, one needs to demand that the features of the

integrand be properly resolved by the chosen interval of evaluationintegrand be properly resolved by the chosen interval of evaluation

in the compactified domain of integration. Otherwise one loses

accuracy. 

If the mapped function becomes “pathological” then the integral did

not exist in the first place, e.g. 
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There are many other identities one can use to handle divergent

integrands. Let us mention only one more, useful when the integrand

has power-law divergences at the endpoints,
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Similar formulas can be found in math handbooks.



Summary

• Differentiation and integration: Taylor 

expand, evaluate. For higher orders, 

extrapolate.extrapolate.

• Richardson extrapolation: key to good 

numerical analysis.


